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1 Introduction

Volatility forecasting has become one of the major cornerstones of the financial econometrics

literature. A very large body of studies has investigated the performance of various volatility

models for forecasting and their applications to e.g. risk management, portfolio selection, option

pricing etc. (cf. Andersen et al. (2005a) for a recent review of volatility modeling and Poon

and Granger (2003) for a review on volatility forecasting). In general, it has been difficult to

outperform the standard Generalized Autoregressive Conditionally Heteroskedastic (GARCH)

model at short horizons (Hansen and Lunde, 2005). However, models that account for important

salient characteristics of asset returns such as long memory, regime-switching, stochastic shocks

and multifractality should be able to generate better out-of-sample forecasts. For instance, the

literature on volatility forecasting has shown that accounting for long memory in the GARCH

framework by means of the (Fractionally Integrated) GARCH model or other long memory

models may improve volatility forecasting at long horizons (Vilasuso, 2002; Zumbach, 2004;

Lux and Kaizoji, 2007).

Moreover, while the literature on Stochastic Volatility (SV) modeling has concentrated

mostly on searching for various efficient methods for the estimation of the parameters (cf.

Andersen et al. (1999) for performance comparisons), studies that compare variants of SV mod-

els to (FI)GARCH models have also found promising evidence in favor of improved forecasting

accuracy. For instance, SV variants such as ARFIMA models adapted to realized volatility

have been found to outperform (FI)GARCH models in terms of forecasting volatility (Ander-

sen et al., 2003, 2005b; Lux and Kaizoji, 2007). There is also evidence that SV models with

regime-switching features may provide improved volatility forecasts (Lu and Perron, 2008).

Recently the Markov-Switching Multifractal (MSM) models have been proposed as another

alternative mechanism to model and forecast volatility. The MSM models are adapted versions

of the Multifractal Model of Asset Returns (MMAR) due originally to Calvet et al. (1997)

and inspired by the work of Mandelbrot (1974, 1999). The notion of multifractality refers

to the variations in the scaling behavior of various moments or to different degrees of long-

term dependence of various moments. The MSM models account for multifractal volatility via

their built-in hierarchical, multiplicative structure with heterogeneous components (Calvet and
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Fisher, 2004). Pertinent empirical findings on multifractality have been reported in several

studies by economists and physicists so that this feature now counts as a well established

stylized fact of financial markets (Ding et al., 1993; Lux, 1996; Mills, 1997; Lobato and Savin,

1998; Schmitt et al., 1999; Vassilicos et al., 2004). There is also direct evidence in favor of the

hierarchical structure of multifractal cascade models in phenomenological analyses of volatility

dynamics at different levels of time aggregation (Muller, 1997). There is already a handful of

studies that compare the forecasting performance of the MSM models against models from the

GARCH and SV families in empirical applications (Calvet and Fisher, 2004; Lux and Kaizoji,

2007; Lux, 2008; Lux and Morales-Arias, 2010). Across a variety of financial markets, these

studies show very promising performance of multifractal volatility models, often leading to

forecast gains against their more time-honored counterparts (e.g. GARCH, FIGARCH, SV).

So far, comparative studies of (FI)GARCH, SV and MSM have been conducted almost ex-

clusively via the assessment of their forecasting performance for various financial data. As it

seems, however, there is in general a lack of systematic Monte Carlo evidence on the relative

performance of volatility models for in-sample fitting and out-of-sample forecasting under var-

ious alternative data generating mechanisms. In contrast, a certain literature exists on the

substitutability of time series models such as ARMA and ARFIMA. For instance, some studies

show that suitably adapted ARMA models can yield a forecasting performance comparable to

that of a ‘true’ underlying ARFIMA model (Basak et al., 2001; Man, 2003). Other contributions

demonstrate that a ‘true’ ARFIMA model can be relatively well approximated by an ARMA

model if the degree of long-term dependence (i.e. the value of the fractional differentiation

parameter) is low (Crato and Ray, 1996; Brodsky and Hurvich, 1999). In any case, these re-

sults show that at least in certain cases, using a misspecified model might not be detrimental

for forecasting purposes. In how far one could obtain reasonable volatility forecasts with the

‘wrong’ model is not known. While we might expect a certain replication of the ARFIMA versus

ARMA findings for the FIGARCH versus GARCH case, the other processes considered (MSM

and SV) are too different in their structural properties to come up with any educated guess on

the relative in-sample and out-of-sample outcomes.

In this study we shed light on the behavior of misspecified volatility models by conducting a
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comprehensive computational analysis with synthetic data. Our experiment consists in simulat-

ing data from the (FI)GARCH, SV and MSM models and then forecasting volatility under the

alternative DGPs. The MC study enables us to compare the relative forecasting performance of

models, which account for quite different characterizations of the latent volatility process: spec-

ifications which incorporate short/long memory, autoregressive components, stochastic shocks,

Markov-switching and multifractality. Since we have a large number of parameters to choose

from in our computational experiment, we have restricted our attention to realistic settings.

To this end, we took as our benchmark parameter sets, the mean group estimates from a large

sample of stock indices at the country level (a total of 48 countries). Note that by calibrating

models with mean estimates from international stock markets, we evaluate, as a by-product, the

‘theoretical’ capabilities of the models considered in forecasting international asset volatility.

In addition, it seems of interest in our set up to uncover the forecasting complementarities

of volatility models that exploit different facets of the unobserved volatility process. Indeed,

a ‘hybrid’ model that accounts for many of the important features of various models might

be a promising avenue for improvement of volatility forecasting and thus of risk management

strategies. Alternatively, a robust model such as the MSM which parsimoniously reproduces

many of the stylized facts of asset returns (including some of those in the (FI)GARCH and SV

models) might have enough flexibility ‘by itself’. In addition, forecast combination strategies

of the (many) existing models could be a simple and elegant way to achieve better forecasts

from ‘hybrid’ specifications and to ‘hedge’ against forecasting with the ‘wrong’ model (Patton

and Sheppard, 2009). In this paper we contribute to the latter issues by constructing forecast

combinations from the various models considered to shed light on their complementarities.

To preview some of our main results, we find that: (i) the MSM model seems to forecast

volatility better than any other model (save for the true DGP) under any other alternative

characterization of the unobserved volatility process and (ii) forecast combinations constructed

from forecasts generated by the various models considered provide a clear improvement upon

forecasts of one single misspecified model.

The paper is organized as follows. The next section introduces the volatility models consid-

ered for the comparative forecasting analysis. Section 3 addresses the Monte Carlo design and
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the results of our study. The last section concludes with some final remarks.

2 The models

In this section we briefly discuss the volatility models of interest for our study. In general,

models of volatility formalize the following specification of financial returns:

∆pt = υt + σtut, (1)

where ∆pt = lnPt − lnPt−1, lnPt is the log asset price, υt = Et−1∆pt is the conditional mean

of the return series, σt is the volatility process and ut ∼ N(0, 1). The υt component of asset

returns can be specified depending on the data generating process assumed for the asset pricing

model. Defining xt = ∆pt − υt, the ‘centered’ returns are modelled as

xt = σtut. (2)

From the above general framework of volatility different parametric and non-parametric repre-

sentations can be assumed for the volatility process σt, e.g. specifications that model different

stylized facts of asset return data (i.e. autoregressive volatility, regime-switching, multifrac-

tality, long memory and stochastic shocks). In this study we consider four distinct models

describing σt: the more time-honored GARCH, the FIGARCH model, the SV model and the

MSM model. For simplicity, in this study we assume υt = 0. In what follows we shortly discuss

the volatility models considered for our analyses.

2.1 Generalized Autoregressive Conditional Heteroskedasticity models

In a seminal study of conditional heteroskedasticity in economic variables, Engle (1982) intro-

duced the Autoregressive Conditional Heteroskedasticity (ARCH) model. The (Generalized)

ARCH model was subsequently proposed by Bollerslev (1986) as a generalization of the ARCH

model. The former model generalizes the latter by accounting for autoregressive features of
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volatility. The GARCH(1,1) model assumes that the volatility dynamics are governed by

σ2
t = ω + αx2

t−1 + βσ2
t−1, (3)

where the restrictions on the parameters are ω > 0, α, β ≥ 0 and α + β < 1. The s-step ahead

forecast representation of the GARCH(1,1) is given by

σ̂2
t+s = σ̂2

g + (α̂+ β̂)s−1
[
σ̂2

t+1 − σ̂2
g

]
, (4)

where σ̂2
g = ω̂(1 − α̂ − β̂)−1. Various extensions to the GARCH model have been proposed in

the financial econometrics literature. One of the major additions to the GARCH-type models

are the models that allow for long-memory in the specification of volatility dynamics. The

FIGARCH model introduced by Baillie et al. (1996) accounts for ‘genuine’ long memory in the

GARCH specification by means of fractional differences. As in the case of (3) we restrict our

attention to one lag in both the autoregressive term and in the moving average term. The

FIGARCH(1,d,1) is given by

σ2
t = ω +

[
1− βL− (1− δL)(1− L)d

]
x2

t + βσ2
t−1, (5)

where L is the lag operator, d is the parameter of fractional differentiation and the restrictions

on the parameters are β − d ≤ δ ≤ (2 − d)/3 and d(δ − 2−1(1 − d)) ≤ β(d − β + δ) (Baillie

et al., 1996). The main difference of the FIGARCH model to the GARCH model is that the

Binomial expansion of the fractional difference operator introduces an infinite number of lags

with hyperbolically decaying coefficients for 0 < d < 1. In the case of d = 0, the FIGARCH

model reduces to the standard GARCH(1,1) model. Note that in practice, the infinite number

of lags with hyperbolically decaying coefficients introduced by the Binomial expansion of the

fractional difference operator must be truncated. We employ a lag truncation at 1000 steps as

in Lux and Kaizoji (2007). The s-period ahead forecasts of the FIGARCH(1,d,1) model can be

obtained most easily by recursive substitution, i.e.

σ̂2
t+s = ω̂(1− β̂)−1 + η(L)σ̂2

t+s−1, (6)
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where η(L) = 1−(1−β̂L)−1(1− δ̂L)(1−L)d̂ can be calculated from the recursions η1 = δ̂−β̂+d̂,

ηj = β̂ηj−1 + [(j − 1 − d̂)j−1 − δ̂]πj−1, where πj ≡ πj−1(j − 1 − d̂)j−1 are the coefficients in

the MacLaurin series expansion of the fractional differencing operator (1− L)d. Both GARCH

and FIGARCH are unifractal models. While GARCH exhibits only short-term dependence (i.e.

exponential decay of autocorrelations of moments) FIGARCH has a homogeneous hyperbolic

decay of the autocorrelation of its moments characterized by the parameter of fractional dif-

ferentiation d. GARCH and FIGARCH models are typically estimated via Quasi Maximum

Likelihood (QML).

2.2 Stochastic Volatility model

In contrast to the deterministic volatility dynamics of the (FI)GARCH family, the SV model

first introduced by Taylor (1999a,b), explicitly allows for an unobservable stochastic shock in the

conditional variance. However, this feature also makes the SV model difficult to implement since

its latent volatility process is stochastic and enters the model for volatility nonlinearly. The SV

model can account for autoregressive volatility as in the (FI)GARCH models and unobservable

stochastic shocks to volatility which may induce ‘apparent’ regime-switching (Lu and Perron,

2008).

In this study we consider the simple stationary SV model which is given by

σ2
t = exp[ht], (7)

where

ht = κ+ ϕht−1 + τεt, εt ∼ N(0, 1). (8)

Moreover, εt is assumed to be generated independently of ut, |ϕ| < 1 and τ > 0 is a scaling

factor. Several estimation approaches have been proposed for the simple SV model (and its

variants) including Generalized Method of Moments (GMM), Efficient Method of Moments

(EMM), QML, or Markov Chain Monte Carlo (MCMC) methods (Melino and Turnbull, 1990;

Harvey et al., 1994; Kim et al., 1997; Gallant et al., 1997; Liesenfeld and Richard, 2003).
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We consider the relatively simple and robust QML approach proposed by Ruiz (1994) which

outperforms the GMM approach and which saves on computational time in comparison to

MCMC or other Bayesian methods. This requires transforming xt in (2) by taking logarithms

of the squares to obtain the linear model:

lnx2
t = E[lnu2

t ] + ht + ξt, (9)

where ξt = lnu2
t − E[lnu2

t ] is a non-Gaussian, zero mean, white noise disturbance term and its

statistical properties depend on the distribution of u2
t . Model (9) coupled with (8) form a linear

state space model. If ut is Normally distributed with mean zero and unit variance then the

mean and variance of lnu2
t are ψ(0.5) − ln(0.5) ≈ −1.27 and π2/2, respectively where ψ(•) is

the Digamma function. Model (9) can be estimated by QML together with the Kalman filter by

treating ξt as though it were N(0, π2/2). Estimates ĥt can be obtained via Kalman smoothing.

The s-step ahead forecast representation of the SV model is given by

ĥt+s = ĥ+ ϕs−1(ĥt+1 − ĥ), (10)

where ĥ = κ̂(1− ϕ̂)−1 and thus we may obtain σ̂2
t+s = exp(ĥt+s + 0.5σ̂2

h) via (7).

2.3 Markov-switching Multifractal model

The MSM model is a causal analog of the earlier combinatorial Multifractal Model of Asset

Returns (MMAR) due originally to Calvet et al. (1997). In contrast to (FI)GARCH and SV

models, the MSM model can accommodate, by its very construction, the feature of multifrac-

tality via its hierarchical, multiplicative structure with heterogeneous components. In addition

to multifractality, MSM models are able to reproduce characteristics of asset return data such

as ‘apparent’ long memory. That is, depending on the number of volatility components, a pre-

asymptotic hyperbolic decay of the autocorrelation in the MSM model might be so pronounced

as to be practically indistinguishable from ‘true’ long memory (Liu et al., 2007).

Instantaneous volatility in the MSM model is determined by the product of k independent
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volatility components or multipliers M (1)
t ,M

(2)
t , . . . ,M

(k)
t and a scale factor σ:

σ2
t = σ2

k∏
i=1

M
(i)
t . (11)

Following the basic hierarchical principle of the multifractal approach, each volatility compo-

nent will be renewed at time t with a probability γi depending on its rank within the hierarchy

of multipliers and remains unchanged with probability 1−γi. Calvet and Fisher (2001) demon-

strate convergence of the discrete MSM model to a continuous-time Poissonian limit under the

following specification of transition probabilities:

γi = 1− (1− γk)(b
i−k), (12)

with γk and b parameters to be estimated. However, previous applications have often used

pre-specified parameters γk = 0.5 and b = 2 in equation (12) which reduces the number of

estimated parameters to two (Lux, 2008). The MSM model is fully specified once we have

determined the number k of volatility components and their distribution. In the small body

of available literature, the multipliers M (i)
t have been assumed to follow either a Binomial or

a Lognormal distribution. Since one would normalize the distribution so that E[M (i)
t ] = 1,

only one parameter has to be estimated for the distribution of volatility components. Taking

into account the scale parameter, σ, we end up with a very parsimonious family of stochastic

processes that is parameterized by only two parameters although the number of states k could

be arbitrary large . An in-depth analysis of the MSM model can be found in Calvet and Fisher

(2004).

We focus on the Binomial MSM which can be estimated via ML or GMM (Calvet and Fisher,

2004; Lux, 2008). In the ML procedure we can obtain optimal forecasts via Bayesian updating

of the conditional probabilities Ωt = P(Mt = mi|x1, ..., xt) for the unobserved volatility states

mi, i = 1, ..., 2k. However, because of the computational demands of repeated updating of state

probabilities via a 2k × 2k matrix, ML estimation for MSM models is very time consuming for

values of k beyond 8. As a fast and reasonably accurate alternative, a GMM approach has

been proposed by Lux (2008). This alternative estimation procedure uses various powers of log
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differences of the original data in order to avoid biases due to the close-to-long-memory nature of

the process. Out-of-sample forecasting of the MSM model estimated via GMM is performed via

best linear forecasts (Brockwell and Davis, 1991, c.5) together with the generalized Levinson-

Durbin algorithm developed by Brockwell and Dahlhaus (2004). We first have to consider the

zero-mean time series:

Xt = x2
t − E[x2

t ] = x2
t − σ̂2, (13)

where σ̂ is the estimate of the scale factor σ. Assuming that the data of interest follow a

stationary process {Xt} with mean zero, the best linear s-step forecasts are obtained as

X̂n+s =
n∑

i=1

φ
(s)
ni Xn+1−i = φ(s)

n Xn, (14)

where the vectors of weights φ
(s)
n = (φ(s)

n1 , φ
(s)
n2 , ..., φ

(s)
nn)′ can be obtained from the analytical auto-

covariances of Xt at lags s and beyond. More precisely, φ
(s)
n are any solution of Ψnφ

(s)
n = κ

(s)
n

where κ
(s)
n = (κ(s)

n1 , κ
(s)
n2 , ..., κ

(s)
nn)′ denote the autocovariance of Xt and Ψn = [κ(i − j)]i,j=1,...,n

is the variance-covariance matrix. In what follows we describe in detail the Monte Carlo set

up for the analysis of the relative forecasting performance of the GARCH, FIGARCH, SV and

MSM volatility models.

insert Table 1 around here

3 Monte Carlo analysis

In the next subsection we describe the MC set up designed for our analyses. In the subsequent

two subsections, the in-sample and out-of-sample results of the MC experiments are discussed,

respectively.

3.1 The Monte Carlo design

The Monte Carlo experiment performed in this paper basically poses the questions ‘what would

be the in-sample estimates obtained for (say) GARCH given that the true model describing the
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data generating process is MSM?’ and analogously, ‘how much better or worse would one fore-

cast volatility if one forecasts with (say) GARCH given that the true data generating process

is MSM?’. More precisely, the exercise consists in simulating synthetic data x̃t with the volatil-

ity specifications σt = {GARCH,FIGARCH,SV,MSM} in (3), (5), (7) and (11), respectively,

and performing in-sample and out-of-sample analyses by using the estimation and forecasting

algorithm of a particular model for σt with the alternative DGPs. Thus, the exercise allows us

to contrast the relative in-sample and out-of-sample performance of volatility models vis-à-vis

each other.

In order to have a realistic calibration, the set of parameters corresponding to the

(FI)GARCH, SV and MSM models introduced in the previous section are taken from the Mean

Group (MG) values for N = 48 all-share stock market indices at the country level (Table 1).

MG estimates are simply obtained by averaging single market estimates. The data has been

standardized prior to estimation and the MG estimates have been rounded off for simplicity.

The sample runs from 06/01/1998 to 12/31/2007 at the daily frequency which leads to 2,500

(return) observations. The data is obtained from Datastream and the countries were chosen

upon data availability for the sample period covered.

When calibrating the models for the subsequent MC simulations, we also make sure to set

the scaling parameters such that the unconditional variance of the simulated model is equal

to one. More precisely, the parameter space for the GARCH model is set to θ =
{
ω, β̂, α̂

}
=

{1− 0.86− 0.11, 0.86, 0.11}. In the case of the FIGARCH model the unconditional variance

is not defined. However, in practice we have to approximate the fractional difference operator

by a truncation lag which we have set to 1000. This, in fact, guarantees existence of a limit

conditional variance (see Chang (2002) for this feature of the FIGARCH model). Thus, the

parameter space of the FIGARCH model is set to θ =
{
ω, β̂, δ̂, d̂

}
=

{
1− λd̂(1), 0.45, 0.13, 0.42

}
where λd(L) = (1−L)d ≈

∑P
p=0 λd,p ·Lp so that the summation to the cut-off P = 1000 instead

of the infinite theoretical sum leads to a non-vanishing λd(1) 6= 0.

In the case of the SV model the unconditional variance is given by exp(h + 0.5σ2
h)

where h = κ(1 − ϕ)−1 and σ2
h = τ2(1 − ϕ2)−1 so we set θ = {κ, ϕ̂, τ̂} ={

−0.5× 0.462 × (1− 0.892)−1 × (1− 0.89), 0.89, 0.46
}
. For the MSM model we set θ =
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{σ, m̂0, k} = {1, 1.46, 8}. Note that for the MSM model we account for only a very moder-

ate number of multipliers k = 8. We do so because ML estimation for MSM models becomes

cumbersome for k > 8. Note, however, that forecasting performance might nevertheless still im-

prove for k > 8 and proximity to temporal scaling of empirical data might be closer (Liu et al.,

2007; Lux, 2008). Our choice of the specification k = 8 is, therefore, a relatively conservative

one.

We use time lengths of T = 5, 000 and T = 10, 000 to simulate the series from which half is

employed for in-sample estimation and the other half for out-of-sample evaluation. We consider

forecast horizons s = 1, 20, 50 and 100 periods ahead and a total of 400 MC repetitions are per-

formed for in-sample estimation and forecasting. To evaluate forecasts we employ mean squared

forecast errors (MSE) and mean absolute forecast errors (MAE). MSE and MAE measures for

each of the models are given in percentage of the MSE and MAE measures of a naive forecast

from the in-sample variance of the simulated series which has been set to one by construction.

Thus, MSE and MAE values below one indicate a superior performance of a particular model

against ‘historical’ volatility.

To define absolute and relative measures formally, let ‘0’ and ‘•’ indicate a benchmark

(historical volatility) and a particular competing volatility model ((FI)GARCH, SV, MSM),

respectively. Forecast errors for τ = T/2 + 1, ..., T − s are given by:

êτ (0) = σ2
τ − σ̂2, êτ (•) = σ2

τ − σ̂2
τ , (15)

where σ2
τ are the (simulated) squared returns (x̃2

t ), σ̂
2 is the historical volatility estimate (in-

sample variance of squared returns which is set to one) and σ̂2
τ is the volatility forecast of the

competing model ((FI)GARCH, SV, MSM). The MSE and MAE of the benchmark (historical

volatility) specification are:

d̄(0) = T −1
∑

τ

dτ (0), dτ (0) = êτ (0)2 or dτ (0) = |êτ (0)|, (16)

with T the number of out-of-sample observations. The average performance of a competing
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model specification is given in relation to d̄(0), obtaining relative MSEs or MAEs as:

dr(•) =
d̄(•)
d̄(0)

, d̄(•) = T −1
∑

τ

dτ (•). (17)

In addition to MSE and MAE measures, we also report quantile Value-at-Risk (VaR) hits

as a non-parametric and ‘scale free’ measure of the reliability of extreme forecast realizations.

From an economic perspective this allows us to assess the appropriateness of the various models

at hand for risk management purposes. In what follows, the value-at-risk of {x̃τ}Tτ=1 conditional

on information set Ωτ−1 with coverage α is denoted VaRτ (α). Formally VaRτ (α) is the quantile

such that,

Prob[x̃τ < −VaRτ (α)|Ωτ−1] = α. (18)

Starting from the above definition for VaRτ (α), we may define the so-called hit process,

Hitτ (α) ≡ I(x̃τ < −VaRτ (α)|Ωτ−1), (19)

where I(.) is an indicator function. Diagnosing VaRτ (α) estimates consists in testing the un-

conditional coverage hypothesis. Along the latter lines, an appropriate model for VaRτ (α)

evaluation should have an unconditional coverage of α. In what follows, we discuss the results

of the Monte Carlo experiments.

insert Table 2 around here

3.2 In-sample results

In-sample results of the MC experiment are displayed in Table 2. For the MSM models we

present ML (MSM1) and GMM (MSM2) estimates which allows us to compare the relative

performance of both estimators when the true DGP is not MSM. It should also hint at whether

the moment conditions based on autocorrelations of absolute log returns used in the MSM

models estimated via GMM would be useful to estimate other volatility models that share

similar characteristics (e.g. FIGARCH and SV). A more detailed comparison between ML and
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GMM estimation for the MSM models can be found in Lux (2008). As it turns out, in-sample

results for T = 2, 500 and T = 5, 000 do not differ substantially. Thus, to save on space, the

following discussion is confined to the case T = 2, 500 in order to be consistent with the sample

size available for the empirical estimation.

For the Binomial MSM model the value of the crucial ‘fractality’ parameter m0 is 1.46,

which indicates a relatively high degree of heterogeneity of volatility components (Lux, 2008).

As expected, the MSM fractality parameter m0 is highest under the MSM DGP but lower

under the alternative DGPs of (FI)GARCH and SV. In fact, no other volatility specification

can mimic the degree of heterogeneity of the MSM. Interestingly, GMM estimation in the

MSM framework results in estimates of the multifractal parameter m0 which are noticeably

different from ML estimation when the true DGP is not MSM. Overall, the model which yields

the highest ML/GMM estimates of m0 is SV, suggesting that the SV DGP resembles regime-

switching processes more than the (FI)GARCH DGP (Lu and Perron, 2008).

GARCH parameter estimates are practically the same under the GARCH and FIGARCH

DGPs. The MSM DGP yields a relatively high persistence of past volatility according to

the GARCH estimate β̄ = 0.76 suggesting that the MSM model generates a high degree of

volatility clustering in asset return volatility. Interestingly, the GARCH model obtains a lower

autoregressive parameter under the SV model (β̄ = 0.69) than under the MSM model (β̄ = 0.76).

Considering the GARCH model as the true DPG, the FIGARCH model yields a degree of

fractional integration d̄ = 0.48 which is not too far apart from the ‘true’ FIGARCH value d̂ =

0.42. The latter outcome is similar to previous findings that the GARCH DGP can induce some

degree of ‘apparent’ long memory (Baillie et al., 1996). As expected, the MSM mimics a high

degree of ‘true’ long memory as given by the estimated parameter of fractional differentiation of

the FIGARCH model, d̄ = 0.69. Indeed, the latter estimate is high in comparison to previous

empirical applications where the latter parameter has usually been less than 0.5 (Baillie et al.,

1996; Lux and Kaizoji, 2007). This outcome confirms previous findings that ‘apparent’ long

memory processes induced from multifractal and/or regime-switching DGPs could be easily

confused with ‘genuine’ ones (Granger and Terasvirta, 1999; Liu et al., 2007). As it seems, the

SV DGP generates the lowest degree of ‘apparent’ long memory as the FIGARCH model yields
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the lowest value for the parameter of differentiation under the former model (d̄ = 0.35).

Lastly, we find that the SV model estimates a high level of autoregressive volatility (about

ϕ̄ = 0.96) when the DGP is GARCH and this estimate is almost identical when the DPG

is FIGARCH (ϕ̄ = 0.97) and not too far apart from the one obtained under the MSM DGP

(ϕ̄ = 0.93). Interestingly, the estimated standard deviation of the volatility shock estimated by

the SV model under the MSM DGP (τ̄ = 0.46) is identical to the ‘true’ value (τ̂ = 0.46) and to

the estimated value when SV is the true DGP (τ̂ = 0.47). The latter result hints at a certain

proximity of stochastic renewals of volatility and regime-switching which is explicitly modelled

in the MSM framework.

Overall we find that the MSM model can mimic many of the features of other models such as

autoregressive volatility, genuine long memory and stochastic shocks while other models cannot

mimic the degree of heterogeneity of the MSM. In the following sections we analyze what the

latter outcome implies for out-of-sample forecasting.

insert Tables 3, 4 and 5 around here

3.3 Out-of-sample results

3.3.1 Single models

We now turn to the discussion of our out-of-sample analyses which are presented in Tables 3, 4

and 5. Table 3 displays forecasting results with the true parameter values (see Table 1) used

for calibration while Tables 4 and 5 display results with estimated parameters (see Table 2).

As expected, using estimated parameters as opposed to true ones usually deteriorates forecasts

in terms of MSE, MAE or VaR quantile hits. However, most models produce qualitatively

similar forecasts with true parameters or estimated ones. Nevertheless, Table 3 provides a good

benchmark for the ‘theoretical’ forecasting capabilities of the volatility models considered.

Considering the MSM model as true DGP, the GARCH model produces the least accurate

forecasts in terms of MSEs and MAEs when compared against the FIGARCH and SV models.

The latter result is intuitive as the MSM model accounts for characteristics such as (apparent)

long memory and stochastic volatility (via the stochastic renewal of multipliers M (i)
t ) which are

also accounted for by the FIGARCH (i.e. long memory) and SV (i.e. stochastic shocks) models
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but ignored by the GARCH model. Comparing forecasts of FIGARCH and SV models, the SV

model can forecast multifractal volatility better.

Taking the GARCH as the true DGP, the MSM1 model seems to offer better forecast

accuracy in terms of MSE and MAE when compared against the FIGARCH and SV models.

When the true DGP is FIGARCH and thus ‘genuine’ long memory is taken into consideration,

the SV (MSM1) model produces the least (most) accurate forecasts in terms of MSEs and MAEs

out of the other three non-FIGARCH models. Interestingly, the MSM model which accounts for

‘apparent’ long memory works relatively well when the true DGP entails genuine long memory

via the FIGARCH specification, while the FIGARCH forecasting performance is dismal when

the true DGP is MSM.

Lastly, out of the three non-SV models considered, we obtain that the FIGARCH (MSM1)

performs worse (best) in terms of MSE and MAE when the true DGP is SV. Thus, it seems

that the MSM model can best forecast stochastic volatility when compared against the other

non-SV models considered. The latter result is intuitive as the MSM accounts for stochastic

shocks to the latent volatility process whereas the (FI)GARCH models do not. Note, however,

that forecastability of SV realisations is very limited beyond short horizons (the same applies

to GARCH time series).

insert Tables 6 and 7 around here

In general, when comparing the models’ forecasts for our synthetic time series, the results

indicate that the MSM model seems to best forecast future volatility independent of the DGP

of the model in terms of MSEs and MAEs. Our results, are also robust with respect to the

unconditional VaR coverage of the forecasts. Tables 6 and 7 show the results on 99% and

95% quantile VaR hits with estimated parameters. When evaluating quantile VaR hits, we find

qualitatively similar results as with MSEs and MAEs. That is, independent of the true DGP, the

MSM model seems to forecasts VaR quantiles relatively well, while the (FI)GARCH models do

less so when the true DGP is MSM or SV. The GARCH model yields good VaR forecasts at lower

horizons independent of the true DGP but its forecasting capabilities deteriorate substantially

at longer horizons. The latter finding is of high importance for practitioners as it indicates that

the MSM model can produce accurate forecasts even when the analyst does not have a clear idea
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of which model to employ when adopting (say) Value-at-Risk measures for risk management

strategies.

insert Figure 1 and 2 around here

The results discussed so far can be easily appreciated in the boxplots displayed in Figures 1

and 2 corresponding to the MSEs and 95% VaR hits over the 400 simulations. Results are

qualitatively the same for MAEs and 99% VaR hits and can be provided upon request. The

boxplots basically show that, in terms of MSEs, the MSM can perform significantly better than

other models when the true DGP is MSM and not significantly worse than other models when

the true DGP is not MSM. The same results also apply for the 95% VaR hits at higher horizons.

Our results point out that the GARCH model falls behind all other models under the other

alternative volatility specifications, particularly at longer horizons. The same applies to the

FIGARCH specification when the true DGP is other than FIGARCH. However, non-GARCH

models such as MSM and SV perform reasonably well when the GARCH or FIGARCH models

are the true DGP. Overall, we find that the models considered exhibit different degrees of

flexibility under alternative DGPs that exploit salient features of financial data such as long-

term dependence, stochastic shocks and regime-switching. Thus, it seems of interest to analyze

whether complementarities exist between the various models at hand and whether forecasting

performance can be improved via combinations of single models, an issue explored below.

3.3.2 Combined forecasts

A particular insight from the methodological literature on forecasting is that it is often preferable

to combine alternative forecasts in a linear fashion and thereby obtain a new predictor (Granger,

1989; Aiolfi and Timmermann, 2006; Patton and Sheppard, 2009; Costantini and Pappalardo,

2009). We analyze forecast complementarities of (FI)GARCH, MSM and SV models by ad-

dressing the performance of combined forecasts. The forecast combinations are computed by

assigning each single forecast a weight equal to a model’s empirical frequency of minimizing

the absolute or squared forecast error over realized past forecasts. We update the weighting

scheme over the 20 most recent forecast errors so that despite linear combinations of forecasts,

the influence of various components is allowed to change over time via flexible weights.
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We consider two sets of forecast combinations CO1 and CO2. The former forecast com-

bination contains all four models (GARCH, FIGARCH, SV, MSM) while the latter excludes

the true model. Thus, CO1 allows us to uncover whether we can improve upon forecasts of

single models by combining forecasts of all models. Similarly, CO2 allows us to analyze how

well we would be able to improve upon forecasts from single models when we combine forecasts

of models that do not include the true DGP.

insert Figures 3 and 4 around here

In terms of MSE and MAEs we find that CO1 improves forecasts of single models that

are not the true DGP (Tables 4 and 5). Forecasts of the true DGP are even improved at

longer horizons for the FIGARCH specification. Combined forecasts CO2 show, as expected, a

deterioration in comparison to CO1. However, the results remain qualitatively similar to those

of CO1 as we find that forecasts of single models are generally improved. Considering VaR

diagnostics by means of quantile hits, we find again qualitatively similar results as for MSE and

MAE evaluations. That is, combining forecasts seems to provide an improvement in forecasting

VaR in relation to several of the single models considered (Tables 6 and 7). Interestingly, the

results on forecast combinations also seem to suggest different behavior for MSM and other

models: For MSM, combined forecasts are somewhat worse than those based on the true DGP,

whereas for other models, combined forecasts are qualitatively similar to those of the true DGP.

Overall, forecast combinations significantly improve upon single models’ forecasts when fore-

casting with the ‘wrong’ model (see Figures 3 and 4). Thus the MC results on the forecast com-

binations confirm the findings of the previous section and of recent empirical studies (Patton and

Sheppard (2009); Lux and Morales-Arias (2010)). That is, ‘hybrid’ specifications between var-

ious volatility models could potentially improve out-of-sample forecasting. However, the MSM

model seems to be quite robust ‘by itself’ independent of the true DGP or forecast combination

strategies.
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4 Conclusion

This paper has analyzed the relative performance of various volatility models for in-sample

fitting and out-of-sample forecasting via Monte Carlo simulations with synthetic data taken from

the volatility specifications σt = {GARCH,FIGARCH,SV,MSM}. The GARCH, FIGARCH

and SV models are some of the most popular models of the volatility literature and each of

them accounts for different facets of asset return data such as short/long memory, autoregressive

components and stochastic shocks. The MSM models are a new addition to the set of volatility

models available in the literature, whose DGP can reproduce various stylized facts of asset

return data that traditional models ignore such as multifractality. They can also account for

‘apparent’ long memory, regime-switching and volatility shocks. Thus comparing all the models

for σt with synthetic data, can give some new insights as to the most appropriate model(s) to

forecast volatility even when the true model is different.

The relative in-sample estimation shows that the level of heterogeneity generated by non-

MSM models is low. However, the MSM model is able to mimic a high degree of ‘genuine’

long memory as given by the estimated parameter of fractional differentiation in the FIGARCH

DGP. The MSM DGP also produces a relatively high short-run persistence of volatility as

estimated by the GARCH and SV models. The latter in-sample results for the MSM model are

in line with the out-of-sample results where we obtain, in general, that the MSM model seems

to best forecast volatility under any other alternative specification of the unobserved volatility

process (save for the true process). In terms of relative MSE and MAE measures, the MSM

model typically yields forecasts that are not too far apart from the true model’s forecasts. The

opposite is true for the GARCH and FIGARCH model which produce relative MSE and MAE

that are significantly higher than those of the original models with stochastic shocks (MSM,

SV). Results are qualitatively similar when considering 95% quantile VaR hits.

Our MC results point out that ‘hybrid’ specifications between (FI)GARCH, SV and MSM

models could potentially improve out-of-sample forecasting. A closer look at the latter possibil-

ity by means of forecast combinations leads to sizeable improvements in terms of MSEs, MAEs

and quantile VaR hits when forecasting with the ‘wrong’ model. Thus, alternative forecasting

algorithms considering forecast combinations between the models analyzed here (and possibly
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others) seem a promising avenue to improve out-of-sample forecasting power of volatility models.

We leave these issues for future exploration.
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