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1 Introduction

Cost-benefit assessments about climate change provide many insights about policy pos-

sibilities dealing with the problem. Although climate change is a genuinely multi-sector,

multi-country problem, simple single-agent climate-economy models can still shed light on

a rich set of questions, as exemplified by the Stern-Nordhaus debate on the discount rate

(Stern (2007), Nordhaus (2008)). An area in which simple models are useful is the assess-

ment of how potentiality of long-term damage of climate change should be translated into

the current policy decisions. The damage function of climate change is an essential ingre-

dient for for such simple climate-economy models. However, many open-ended questions

remain about the formulation (e.g., Heal (2009)). The DICE model (Nordhaus (2008), per-

haps the most widely used climate-economy model, uses a damage function proportional

to the level of the atmospheric carbon stock incurring a fractional damage to the gross

output. But its choice of functional form is also important and challenged by a number of

economists, indicating that the use of alternative forms could radically change the behavior

of the system and therefore policy recommendations (e.g., Sterner and Persson (2008)).

Such unknownness of climate damage poses an interesting question for the ones seeing

climate change as a problem of economic decision-making under uncertainty1. So far, most

economic modeling studies of climate change and uncertainty simply adopt the standard

DICE-like damage function (major studies include Peck and Teisberg (1993), Pizer (1999)

and Nordhaus (2008): reviews on this topic can be found in Heal and Kriström (2002),

Peterson (2006) and Pindyck (2007)). But for the above reason, it is fair to assume that

an alternative form of damage function may produce significantly different qualitative

implications as to the effect of uncertainty on the climate-economy modeling. As such, it is

worth examining the impact of stochasticity on the behavior of a climate-economy model

with an alternative form of damage function, and that is the focus of the paper.

Specifically, we choose a damage function associating climate change and a renewable

1This is essentially the question that Weitzman (2009) addresses as well, although his approach is very
different from ours.
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resource. The idea comes from the argument that the effects on the ecosystem could be a

major component of climate change damage, as it is considered that up to 40% of species

worldwide may face extinction with 2C of warming (Stern (2007)). There is a range of

qualitative evidence that damages of ecosystems due to climate change could greatly affect

human welfare (MEA (2005)), but this factor is rarely specifically formulated in the existing

studies of climate-economy modeling. A renewable resource in the model serves as a simple

representation of ecosystem services, and this formulation would also provide implications

about the policy need to balance conservation of ecosystems and climate change mitigation.

Here, we use a simple framework of resource economic model. The economy is dependent

on the depletion of natural resource, which has a potential to regenerate. Climate change

is considered to damage the carrying capacity of the resource, as climate change is likely

to harm ecosystems more by diminishing habitats than by directly killing species

Our study is an extension of Lontzek and Narita’s (2009) study, which found that by

using a DICE-like damage function, the effect of damage uncertainty on optimal mitiga-

tion varies even in sign with different degrees of risk aversion. This result arises because

economies endowed with different levels of the capital stock have different preferences about

the tradeoff between consumption smoothing and climate change mitigation.

Our study adds a new dimension to the analysis, namely climate impacts on the ecosys-

tem, and aims to draw a richer set of implications. In addressing different research ques-

tions, a number of authors have identified the feature that uncertainty can induce both

more precautionary and less precautionary policies depending on the configurations of

parameters. Discussions of this feature in renewable-resource modeling include Pindyck

(1984), Olsen and Shortle (1985) and Ohta (2005). There are also some studies discussing

this effect in a broad context of environmental policy, e.g.: Viscusi (1985). However, in the

literature of climate change economics this characteristic is little emphasized and therefore

not well investigated.

Our results confirm that the effects of uncertainty on the optimal decisions of climate

mitigation, capital investment and resource extraction are not clear-cut, in other words,

uncertainty of climate change does not necessarily lead to precautionary actions against
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the problem. A particularly noteworthy finding is that the ecosystem richness may affect

the impact of uncertainty on climate mitigation not only in degree but also in sign i.e.,

an increase of mitigation with a poor ecosystem but a reduction of climate mitigation

with a rich ecosystem. This would have an implication for the present world seeking

sustainable development, which is to balance economic growth, and climate and ecosystem

protections. Meanwhile, the results show that the effects of uncertainty on the model

behavior significantly change according to the level of risk aversion.

We proceed as follows: In section 2 we describe the modeling framework and explain

the solution method. Section 4 presents the main results of our model and provides a

discussion. Section 5 concludes

2 Modeling Framework & Solution Method

We consider an economy which produces a single consumption good using a decreasing

returns to scale technology with capital services K and q units of a renewable resource2.

The production function has the following properties: YK > 0, YKK < 0, Yq > 0, Yqq < 0

and YKq > 0 . The production process generates emissions � · Y , where � denotes the

emissions coefficient of output3. With additional expenditure, the amount of emissions is

reduced; m represents the fraction of carbon emissions which is under control, i.e. not

emitted in the atmosphere. Consequently, the atmospheric stock of carbon S evolves with

dS = (� · Y (K, q) · (1−m)− β · S) · dt (1)

2For simplicity, we consider only a renewable resource as input and do not explicitly model non-
renewable resources. This formulation is valid when the limitation of non-renewable resources is negligible.
This could in fact be a fair assumption considering, say, the immense global size of coal reserves.

3Note that emissions could be proportional to the output even if Y is a function of the renewable
resource which originates from the natural system and does not involve fossil fuel combustion itself. For
example, wood does not produce emissions itself (it is carbon-neutral) but the use of timber accompanies
emissions, as a form of either logging and transportation of products or of enhanced activities of housing
construction, etc.
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where β is the net constant removal rate of atmospheric carbon into other carbon sinks

(e.g. the ocean). At this point we assume that the atmospheric stock of carbon causes

a rise in the level of global mean temperature. Let T (S) be the increase of global mean

temperature from the pre-industrial level with TS > 0 and TSS ≥ 0. We assume that rising

levels of global mean temperature cause damage to output. We denote the damage by

D(T ) and assume DT > 0, DTT > 0 and D(0) = 1.

Thus, the output balance condition reads

Y (K, q)

D(T (S))
= I + c+M(m) (2)

The left-hand side of (3) is the net output inclusive of damage. The net output is in balance

with the sum of the following: (i) consumption c which yields utility U(c) with Uc > 0

and Ucc < 0; (ii) M(m,Y ), the emission control costs with Mm > 0, Mmm > 0, MY > 0,

MmY > 0 and MY Y ≥ 0; (iii) capital accumulation via investment I. The stock of capital

K evolves according to

dK = (I − δ ·K) · dt (3)

where δ is the capital depreciation rate. Finally, we represent the dynamics of the renewable

resource stock as:

dR = (γ ·R · (1− R

CAP/D(T (S))
)− q) · dt+ σ ·R · dB (4)

As for the growth function of renewable resource, we adopt a simple logistic function

with the carrying capacity parameter CAP. The renewable resource is a representation of

ecosystem services, such as the provision of fresh water, food, wood, fiber and fuel. A

fraction of resource q is subtracted from the stock for human use at each time. Since the

purpose of our study is to examine the effect of alternative climate damage representation,
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here we consider that the climate change damage negatively influences the level of carrying

capacity. This is a logical assumption given the fact that climate change is likely to cause

damaging effects more to the habitat of species directly than to the flow of ecosystem

service, through changes in river flows or ocean acidification (e.g., MEA (2005)). We add

stochasticity as a geometric brownian motion to the dynamics of resource stock since it

is conceivable that the renewable resource is more susceptible to natural variabilities than

other parameters.

Our purpose is to dynamically investigate the optimal choice of consumption, emissions

control, capital investment and the use of the renewable resource given uncertainty about

the availability of the eco-system services. To this end, we formulate the problem from the

social planner’s perspective. Given the uncertainty over R, the social planner maximizes

the expected present value welfare.

max
ct>0,0≤mt≤1,0≤qt

E

� ∞

0

e−ρt [U(ct)] dt (5)

subject to (1)-(4) and S(0) = S0, K(0) = K0 and R(0) = R0. To solve (5) we perform

stochastic control, the continuous time version of dynamic programming. The correspond-

ing Hamilton-Jacobi-Bellman (HJB) equation is 4

0 = max
c>0,0≤m≤1,0≤qt

{U(c) + VS(K,S,R)(� · Y (K, q) · (1−m)− β · S)

+ VK(K,S,R)(
Y (K, q)

D(η, S))
− c−M(m,Y )− δ ·K)

+ VR(K,S,R)(γ ·R · (1− R

CAP/D(T (S))
)− q)

+
1

2
σ2RVRR(K,S,R)− ρV (K,S,R)} (6)

where V is the value function and VK , VS and VR are the derivatives of the value function

4Notice that by setting up the maximization problem as in (5), we do not restrict capital investments
I to be positive. In fact, for some areas of the state and parameter space optimal investment is negative.

6



w.r.t. the state variables, i.e. the shadow values. The Euler equations are obtained from

differentiating the Bellmann equation w.r.t. the control variables. They are:

Uc = VK(K,S,R) (7)

Mm = −VS(K,S,R) · � · Y (K)

VK(S,K,R)
(8)

Yq =
VR(S,K,R)

VK(S,K,R)(D−1 −MY ) + VS(S,K,R)(1−m)�
(9)

Equation (7) states that the marginal utility from consumption should be equal to the

derivative of the value function with respect to capital, i.e. the shadow price of capital.

From (8) it can be easily seen that VS ≤ 0. The optimal choice of m, the emissions control

rate, thus positively depends on the shadow price of atmospheric carbon (in absolute terms)

and instant emissions. It negatively depends on the shadow price of capital.

A solution to (5) requires finding a value function V(K,S,R) and policy functions

c(K,S,R), m(K,S,R) and q(S,K, η) which satisfy the Bellmann and Euler equations (6)-

(9). We determine the policy functions and the value function numerically using a projec-

tion method. Projection methods work very well with continuous-time, continuous-state

problems (Judd (1992), Judd (1998)). In particular, we apply the Chebyshev collocation

method using a linear combination of basis functions whose coefficients approximate the

solution to (6)-(9) at specific collocation nodes. The approximated value function and
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policy functions are given by:

Ṽ (K,S,R) =
�

i

�

j

�

k

wV
ijkTi(xK)Tj(yS)Tk(zR) (10)

c̃(K,S,R) =
�

i

�

j

�

k

wc
ijkTi(xK)Tj(yS)Tk(zR) (11)

m̃(K,S,R) =
�

i

�

j

�

k

wm
ijkTi(xK)Tj(yS)Tk(zR) (12)

q̃(K,S,R) =
�

i

�

j

�

k

wq
ijkTi(xK)Tj(yS)Tk(zR) (13)

We define Ti(xK), Tj(xS) and Tk(zR) as ni, nj, nk-degree Chebyshev polynomials which are

evaluated at the states with xK , xS, xR being a mapping [Kmin, Kmax] × [Smin, Smax] ×

[Rmin, Rmax] �−→ [−1, 1]× [−1, 1]× [−1, 1]. The collocation coefficients wV
ijk, w

c
ijk, w

m
ijk and

wq
ijk are then determined in order to minimize the Bellman and Euler errors and to deliver

a good approximation of (6)-(9). In order to solve the model numerically we assume the

following functional forms:

Y (K, q) = A · µKν · qmu

D(T (S)) = 1 + κ · T (S)2

T (S) = τ · (S − SPI)

M(m) = ψ · � · Y ·m2

U(c) =
c1−α

1− α

The parameter values are: ν = .5, κ = .005, τ = .003, ψ = .1, � = .3, SPI = 400, α = .8,

ρ = .01, A = 1, CAP = 500, γ = .05 and σ = .05. With the lack of solid empirical data, we

choose these parameter levels by considering computational constraints and usefulness for

illustration. The choice of level for some parameters in fact does not have influence on the

general model dynamics as it only determines how the model is normalized. Meanwhile,

the model behavior is significantly influenced by the level-setting of some other parameters,

most importantly of the elasticity of marginal utility α. For this reason, we later examine
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the model characteristics with different levels of α as well

3 Results and Discussion

We compute numerically the deterministic steady state and obtain K̃ = 50, S̃ = 1500 and

R̃ = 175. Given these values we set up the projection grid by discretizing the spate space

around the steady state. We choose K ∈ [25, 75], S ∈ [800, 2500] and R ∈ [100, 250]. The

Chebyshev polynomials are of degree 6 in all states i.e.: ni, nj, nk = 6. We formulate the

optimization problem in AMPL and use KNITRO’s active set algorithm to solve it.

3.1 Basic results: optimal values and policy functions

First, we show the basic results of the model. Figure 1 reports the value function for three
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Figure 1: Value function for different R�s and σ = 0.05
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different levels of the renewable resource in K − S space5. Note that the graph shows

feasible sets of K-S with respective levels of R and V and not the dynamics of K and S (as

R changes over time) We observe that for each resource level the value function is smooth

and concave in both, the carbon stock and the capital stock. This implies ceteris paribus

that an increase in capital leads to a less than proportional increase in the value function.

This is due to diminishing returns to capital investments. On the contrary, an increase

in the carbon stock leads to a more than proportional loss in welfare which reflects the

quadratic structure of the damage function. Finally, since in Figure 1 the three levels of the

resource state (R = 100, 175, 250) are equally spaced, we deduct that the value function is

also concave in the level of the resource stock. Again, this result is mainly driven by the

diminishing returns to resource input.

Figure 2 depicts the contour plot for the optimal mitigation policy in K−S space. The

solid contour lines relate to a low resource stock (R=140) while the dashed contour lines

represent a high resource stock (R=210).
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Figure 2: Optimal mitigation for σ = 0.05 and different levels of R

5The approximation residuals are in the order of 10−9
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The first observation from Figure 2 is the concavity of the contour plots. Optimal mitiga-

tion rises with north-eastern movement in the state grid. This result seems intuitive since

(i) for any given level of the capital stock higher carbon levels call for more mitigation

to prevent larger damage and (ii) for any given level of the carbon stock higher capital

availability leads to more output which can be allocated to mitigation activities. Finally,

for any K − S combination higher availability of the renewable resource affects mitigation

positively. This is mainly due to higher extraction levels which lead to more output. The

contour plots for optimal consumption are shown in Figure 3 below. Consumption increases

with higher capital availability since the latter also generates more output. For any given

capital stock level, consumption slightly falls when the stock of carbon is higher. This effect

intensifies for higher levels of the capital stock which can be seen from the stronger curva-

ture of the contours when going to the right along the horizontal axis. This behavior occurs

because mitigation serves as a stronger substitute for consumption when capital availability

is high. Thus, the dynamic trade-off between decreasing marginal utility and increasing

marginal prevention of damage moves in favor of mitigation activities. Figure 3 also shows
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Figure 3: Optimal consumption for σ = 0.05 and different levels of R

that consumption is intensified with rising availability of eco-system services. This effect
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results from the substitutability of resource for capital in the production function, leaving

more capital idle for e.g.: consumption.

The optimal usage of eco-system services for generating output is depicted in Figure 4.

Higher levels of the carbon stock and thus, higher damage reduces the extraction of the

resource stock. Extraction levels also fall with higher availability of the capital stock, which

results from the substitutability between capital and eco-system services in the production

function. In Figure 4 one can observe a flattening of the contour lines for higher levels of

capital. This can be explained by the decreasing (negative) elasticity of extraction with

respect to the carbon stock. When capital is largely available, higher damage reduces

extraction much faster when compared to cases in which capital is scarce. The comparison
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Figure 4: Optimal extraction for σ = 0.05 and different levels of R

of the dashed and solid lines in Figure 4 leads to an intuitive conclusion that the optimal

extraction rises with a higher stock of the renewable resource (in other words, the stock

potential for ecosystem services). Meanwhile, uncertainty influences the resource extraction

in a more complex fashion. Figure 5 illustrates the impact of stochasticity on the patterns

of optimal resource extraction. Each plot in Figure 5 shows the percentage change in

optimal extraction when uncertainty is included (σ = 0 to σ = 0.05). The three plots
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differ with respect to the size of the resource stock (100, 175 and 250).

While the shape of all surface plots is quite intuitive (increasing in K and decreasing

in S), we observe a change in sign for the effect of uncertainty on the percentage change

in extraction. For lower levels of the resource stock uncertainty about the size of the

resource stock leads to lower extraction. On the contrary, high availability of the resource

makes the effect of including uncertainty on extraction positive. This change in sign can

be explained as follows. Generally, uncertainty may influence the optimal decision in case
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Figure 5: Optimal extraction - % change from σ = 0 to σ = 0.05

that today’s action makes a lasting effect on the utility flow in the future (i.e., in presence

of irreversibility). If the extraction of resource has a chance to cause negative irreversible

effects on the wealth, uncertainty itself has an effect of reducing the present extraction level.

This is the case for R=100 and 175, in which the current resource extraction would overall

have an diminishing effect on the future wealth through a size reduction of the resource

base or an increase of the carbon stock (climate damage). Meanwhile, the capital stock is

also an determinant of the utility or consumption level. The resource extraction enhances

the output and consequently the capital accumulation. Hence, under certain conditions, a

way to hedge against uncertainty is rather an increase of resource use and accumulation of

capital. This is the case for R=250, a consequence of the ample resource size with which

a fractional loss of resource at present does not have grave long-term implications on the
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(regeneration of) resource base.

3.2 Effects of uncertainty and risk aversion

In this section, we examine the effects of uncertainty on the model behavior more in depth.

In particular, we discuss model results with varying levels of the risk aversion parameter α,

which influences the agent’s responses to uncertainty. in the published literature of climate

change economics, this aspect is hardly explored (an exception is a simple calculation by

Heal and Kriström (2002)), and little insight has been obtained.

In the following we present three plots (Figures 6-8), each for one control (mitigation,

consumption and extraction). Each plot consists of four subplots which vary with the

location in the K − S space (i.e.: low K = 25, low S = 800, high K = 75, high S = 2500).

Each subplot depicts the contours of the specific control policy for different combinations

of the risk aversion parameter α and the size of the renewable resource.

First, Figure 6 displays optimal mitigation. It can be easily seen that optimal miti-

gation increases with higher levels of capital, carbon stock and resource stock - intuitive

results. Meanwhile, the relationship between the emission abatement and the risk aversion

is somewhat more complex, showing that a higher risk aversion is associated with more

mitigation with a high capital but less mitigation with a low capital. This is a different form

of manifestation of the characteristic discussed in the last section, a competition between

a moderation effect (i.e., dealing with the risk of climate change by scaling up mitigation

efforts and reducing investment) and a substitution effect (i.e., hedging against loss of cli-

mate change damage by enhancing output by more capital investment and therefore less

mitigation). A high capital means a small return to investment and thus makes investment

relatively unattractive over mitigation, while a low capital has exactly the opposite effect.

A different but similar logic could explain the effects of uncertainty displayed by dashed

contours in Figure 6. We see that for larger levels of the risk aversion parameter, uncertainty

about the availability of the renewable resource increases mitigation, while the latter is

reduced for lower levels of risk aversion. Thus, for any level of the resource stock there
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Figure 6: Optimal mitigation in α−R space for different levels of σ andK−S combinations.

exists a level of risk aversion which marks a switching point for the effect of uncertainty on

mitigation. The combination of these switching points in α − R space is depicted by the

dashed grey line. It can bee seen that the switch of mitigation response to uncertainty in

sign occurs at levels of α roughly around 1.2−2.2. In order to explain this result intuitively

we need to answer (1) why do the switching points occur and (2) why the combination

of these switching points is downward sloping. As for the first point, we should keep

in mind that any dollar spent on mitigation cannot be used for consumption or capital

accumulation. The economy must therefore weigh an intensive use of ecosystem services

leading to future consumption losses, and a reduction in mitigation, leading to current
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consumption gains. Therefore, there is less need for mitigation with uncertainty if the

degree of risk aversion, and consequently the need for consumption smoothing, is low. After

all, mitigation is an instrument whose eventual aim is to ensure higher consumption levels in

the future since it substitutes future consumption gains due to less reduced climate change

for current consumption losses. Consequently, if the need for consumption smoothing

increases (i.e.: α rises), mitigation, as an instrument of consumption smoothing, becomes

more effective at achieving the latter and thus, becomes more desirable. Finally, in order to

explain the second question, we note that the downward-sloping dashed grey line in Figure

6 implies that with higher levels of the resource stock, the positive effect of uncertainty

on mitigation sets in already at lower levels of risk aversion. High levels of the resource

stock translate into larger output and therefore consumption levels. Thus, at this stage,

the economy can simply pay more attention to sustainable future consumption despite the

irreversibility of mitigation expenditure. As a consequence, for larger levels of the resource

stock the switching point will occur at lower levels of risk aversion.

Figure 7 displays the optimal consumption policy with a plot setting analogous to

Figure 6. Uncertainty has a small negative effect on consumption throughout the state

space of the model simulations (result not shown in the graph for the reason of better

visualization). In general we observe that higher availability of the capital stock (i.e.:

higher output) increases consumption whereas a larger stock of atmospheric carbon lowers

consumption. These findings are in line with the ones from Figure 3. The degree of risk

aversion has a mixed effect on consumption, depending on the size of the capital stock.

With a low availability of the capital stock (in this case below the long run steady state

level) increasing risk aversion leads higher consumption, while the reverse effect is observed

for high capital levels. In the latter case, consumption is shifted towards the future since

the need for consumption smoothing is larger due to higher risk aversion.

The need for consumption smoothing due to increasing risk aversion is also the major

driver of optimal extraction levels, as shown in Figure 8. As a consequence the degree of

risk aversion also has a mixed effect on extraction, depending on the size of the capital

stock. With a low availability of the capital stock increasing risk aversion leads to higher
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Figure 7: Optimal consumption in α−R space for different levels of σ and K − S combi-
nations.

consumption and therefore to lower extraction volumes. The reverse effect can be observed

for high capital stock levels. In that case, higher risk aversion leads to a postponement

of resource extraction in order to smooth out the consumption pattern. Furthermore, we

observe that optimal extraction levels decrease with higher levels of the capital stock, which

is due to the substitution of the input factors of the production function. Also, extraction

levels fall with more carbon stock in the atmosphere. Though, not shown in this figure,

uncertainty in general has a negative effect on extraction, except for very high levels of R

and K, and S for which the effect becomes positive and can be explained along the lines of

Figure 5.
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Figure 8: Optimal extraction in α−R space for different levels of σ andK−S combinations.

4 Concluding remarks

This study’s results present interesting policy implications for economies seeking sustain-

able development. The availability of the renewable resource in the model, a simple rep-

resentation of ecosystem services, significantly influences our optimal policy of climate

change mitigation under uncertainty. This would be a useful perspective for the present

world having to find the balance between economic growth, climate change mitigation, and

ecological conservation. In particular, the model shows that an economy where ecosystems

are in danger would need to be very precautionary both in keeping the potential of ecosys-

tem services and in mitigating climate change. On the other hand, the results also provide
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some ground for a ”get rich first” approach by a poor economy in tackling with climate

change – in other words, prioritization of capital investment and economic growth at the

expense of the climate and ecosystems at the initial stage, and the uncertainty of climate

change may in fact amplify this tendency, not deterring it. It should be reminded that this

study is not an analysis one and is not conclusive about in what domain the actual world

economy is currently located in terms of effects of uncertainty on optimal policy decisions

– this question is left to future investigations.

Besides, our results clearly show that with different levels of risk aversion, uncertainty

affects the optimal mitigation policy differently, not only in quantity but also in sign.

This is an important viewpoint for this framework to be applied in real policymaking, as

people’s perception about risk is a deep conceptual issue by itself being analyzed from

various standpoints.

5 Acknowledgements

We would like to thank Ken Judd and Ulrich Schmidt for helpful suggestions. We grate-

fully acknowledge the financial support provided by the German Research Foundation (the

”Future Ocean” Cluster of Excellence program) for Daiju Narita

References

Heal, G. (2009) ‘Climate economics: A meta-review and some suggestions for future re-

search.’ Review of Environmental Economics and Policy 3(1), 4–21

Heal, G. , and Kriström, B. (2002) ‘Uncertainty and climate change.’ Environmental and

Resource Economics 22, 3–39

Judd, K. L. (1992) ‘Projection methods for solving aggregate growth models.’ Journal of

Economic Theory 59, 410–452

19



(1998) Numerical Methods in Economics (The MIT Press)

MEA (2005) ‘Millennium ecosystem assessment, ecosystems and human well-being.’ Tech-

nical Report, World Resources Institute

Nordhaus, W.D (2008) A Question of Balance: Weighing the Options on Global Warming

Policies (Yale University Press, New Haven, CT)

Ohta, H (2005) ‘Renewable resource and capital accumulation under uncertainty.’ Review

of Urban and Regional Development Studies 17(1), 18–24

Olsen, J. , and Shortle, J. (1985) ‘The optimal control of emissions and renewable resource

harvesting under uncertainty.’ Environmental and Resource Economics 7(2), 97–115

Peck, S.C. , and Teisberg, T.J. (1993) ‘Global warming uncertainties and value of infor-

mation: An analysis using ceta.’ Resource and Energy Economics 15, 71–97

Peterson, S. (2006) ‘Uncertainty and economic analysis of climate change: A survey of

approaches and findings.’ Environmental Modeling and Assessment 11(1), 1–17

Pindyck, R.S (1984) ‘Uncertainty in the theory of renewable resource markets.’ Review of

Economic Studies 51, 289–303

Pindyck, R.S. (2007) ‘Uncertainty in environmental economics.’ Review of Environmental

Economics and Policy 1(1), 46–65

Pizer, W.A. (1999) ‘The optimal choice of climate change policy in the presence of uncer-

tainty.’ Resource and Energy Economics 21, 255–287

Stern, N. (2007) The Economics of Climate Change The Stern Review (Cambridge Uni-

versity Press, Cambridge)

Sterner, T. , and Persson, U.M. (2008) ‘An even sterner review: Introducing relative prices

into the discounting debate.’ Review of Environmental Economics and Policy 2(1), 61–76

20



Viscusi, W.K. (1985) ‘Environmental policy choice with an uncertain chance of irreversibil-

ity.’ Journal of Environmental Economics and Management 12, 28–44

Weitzman, M.L. (2009) ‘On modeling and interpreting the economics of catastrophic cli-

mate change.’ Review of Economics and Statistics 91(1), 1–19

21




