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We investigate the impact on effective terrorism response
of the viability degradation of biological weapons agents
in the environment. We briefly review the scientific
understanding and modeling of agent environmental viability
degradation. In general, agent susceptibility to viability
loss is greatest for vegetative bacteria, intermediate for
viruses, and least for bacterial spores. Survival is greatest
in soil and progressively decreases in the following
environments: textiles, water, hard surfaces, and air.
There is little detailed understanding of loss mechanisms.
We analyze the time behavior and sensitivity of four
mathematical models that are used to represent environmental
viability degradation (the exponential, probability, and
first- and second-order catastrophic decay models). The
models behave similarly at short times (<30 min for our
example case) but diverge to significantly different
values at intermediate to long times. Hence, for a release
event in which the majority of atmospheric exposure or
deposition occurs over very short times, the current response
models likely provide a good representation of the
hazard. For longer time phenomena, including decontamina-
tion, the current model capabilities are likely insufficient.
Finally, we implement each model in a simple numerical
integration of anthrax dispersion, viability degradation, and
dose response. Decay models spanning the current
knowledge of airborne degradation result in vastly different
predicted hazard areas. This confounds attempts to
determine necessary medical and decontamination measures.
Hence, the current level of understanding and representation
of environmental viability degradation in response models
is inadequate to inform appropriate emergency response
measures.

1. Introduction
Over the past few decades, numerous estimates have
indicated the serious threat of chemical and biological
terrorism (1-3). Biological weapons, in particular, likely pose
the most significant terrorism threat. They are relatively easy
to produce and could result in deaths comparable to nuclear
weapons (4). Threat estimates include predictions of hun-

dreds of thousands of deaths resulting from the release of
aerosolized anthrax spores in an urban area (5). Actual attacks
have substantiated the threat of chemical and biological
weapons (CBW). In the 1990s, the Japanese cult Aum
Shinrikyo released sarin gas both in the city of Matsumoto
and in the Tokyo subway (6). In 2001, anthrax spores were
enclosed in letters sent through the United States mail system
(7). These attacks resulted in several deaths, numerous
hospitalizations, and widespread fear (8, 9). The economic
impact associated with these actual attacks and with defense
against the threat is also significant. The Henry L. Stimson
Center estimates that the Federal Government spent 1.77
billion dollars on defense against weapons of mass destruc-
tion terrorism in fiscal year 2002 (10). Additionally, decon-
tamination after the 2001 anthrax attacks alone exceeded
100 million dollars (11).

Mathematical models are used to estimate the hazard
resulting from an actual release of a CBW agent. They are
also used to plan for the response to such releases. Response
and planning models typically include representations of
agent release physics and chemistry, transport and dispersion
of the agent in the atmosphere, agent viability decay in the
environment, agent deposition on surfaces, and calculation
of the resultant hazard. Example hazards include human or
animal injury or death and extent of the contaminated area.
In this work, we focus on one aspect of response and planning
modeling, namely the representation of biological agent
viability degradation (or decay) in the environment. Here,
we define viability degradation as the injury to or death of
the biological agent, causing it to be less harmful. (Our
definition does not include physical processes, such as
coagulation of agent particles. These result in lowered
infectivity but do not injure or kill the agent.) Numerous
damaging processes impact biological agent survival in the
atmosphere and after deposition on surfaces. These include
heating, desiccation, irradiation, and oxidation. The rate of
agent death or injury in the environment may have a
significant impact on the hazard resulting from a terrorism
release. It will certainly affect the level of decontamination
needed to ensure that the hazard area is safe to occupy.
Therefore, understanding and modeling of environmental
viability decay of biological agents is necessary for terrorism
response planning.

In this work, we probe the current understanding of
degradation of biological weapons agents in the environment
and investigate its implications for terrorism response. In
Section 2, we summarize the state of the science on biological
weapons agent degradation in the environment. Section 3
quantitatively investigates the time behavior of different decay
models. We also compare the hazard areas predicted by the
use of each model in a release simulation. Finally, Section
4 provides a further discussion of the implications of this
work for terrorism emergency response planning.

2. Current State of Knowledge
To determine the state of knowledge on biological agent
viability degradation in the environment, we performed an
extensive literature search (see Supporting Information).
Although this search was not exhaustive, it provides a good
representation of the publicly available knowledge in the
field. Additional research reports relevant to this paper may
be available in the classified or unreferenced literature (i.e.
from weapons programs). However, we have confined
ourselves to the open literature in the hopes of contributing
to the broader public scientific debate on biological terrorism
and appropriate response strategies. In this section, we
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provide a general overview of the knowledge available that
can inform discussion of viability decay modeling and
terrorism response.

Agent Types and Characteristics. There are numerous
biological agents that are considered potential terrorist
weapons agents. (See the Centers for Disease Control and
Prevention Web site for one such list (12). )These agents can
be categorized into three basic types: spore-forming bacteria,
vegetative bacteria (nonspore-forming), and viruses. Biologi-
cal toxins, including ricin and saxitoxin, are also often
included in the biological agent category, although they are
not living organisms. Consequently, their behavior in the
environment is more similar to chemical weapons agents
and is not considered in detail here. Spore-forming bacteria
are responsible for diseases including anthrax and Q-fever
(a rickettsia with a spore-like form). These bacteria persist
in a highly resistant form and, hence, survive dissemination
and transport processes more easily. Once inside the host,
the spore germinates into a vegetative (growing) state. Other
bacteria can be disseminated in their vegetative state, causing
such diseases as tularemia and plague. Viruses that are
considered potential weapons agents include smallpox,
Ebola, and Venezuelan equine encephalitis. Recent reviews
provide descriptions of agents, agent types, characteristics,
and the medical hazards of specific agents (13, 14).

Measures of Degradation. Several measures are used to
describe the hazard that biological agents pose to humans
(or animals): survival, viability, and infectivity. Agent survival
is a nonspecific general phrase referring to the ability of a
microorganism to initiate growth in an appropriate medium
or to initiate disease in a susceptible host. It is used to describe
the state of an individual microorganism (cell or virion) or
an individual agent particle (which may be a single cell or
a group of cells). It is also used to describe the state of a
population of cells (or group of particles) as a percentage
survival. Agent viability refers specifically to the survival of
the microorganism outside a host, whether it can initiate
disease in a particular host. It is a necessary prerequisite for
infectivity. Infectivity is the capability of a microorganism to
invade a host and multiply detectably in the host, generally
causing disease symptoms. Infectivity includes both agent
viability outside the host and the response of the host to a
given dose of viable agent (the dose-response relationship).
Infectivity is therefore dependent on many host-specific
factors, such as immune response (15). Since we are interested
in the impact of the environment on biological agent survival,
we focus on viability degradation for our quantitative
analyses. However, in this section we discuss conclusions
that can be drawn from all survival studies (in vitro and in
vivo).

Degradation Studies. A number of studies have inves-
tigated pathogen survival in a variety of environments,
including in air, water, sediments, sewage, soil, linens, and
on surfaces ((16) provides a review). Generalizations from
these studies can inform understanding of the survival of
potential biological weapons agents. In broad terms, these
studies indicate that spores are least sensitive to viability
decay in the environment (or under active decontamination
processes), vegetative bacteria are most sensitive, and the
sensitivity of viruses is intermediate. Studies also indicate
that agent survival generally increases in the following
progression of environments: in air, on hard surfaces, in
water, embedded in textiles, and in soil. Many pathogenic
vegetative bacteria only survive for minutes to hours in air,
while spores may survive for centuries to millennia in soils.
For human pathogens with animal or insect hosts (including
plague and the hemorrhagic fever viruses), increased survival
may occur if the disease becomes established in these vector
reservoirs.

Quantitative studies of airborne biological agent survival
have also been conducted. Defense programs at government
laboratories have performed much of the work, limiting its
availability in the open literature. However, several texts and
review articles in the aerobiology field, on airborne survival
of surrogate microorganisms and some potential biological
weapons agents, provide research results from the defense
work (e.g. refs 15, 17-21). Previous studies have investigated
the environmental factors that impact survival. These include
many attempts to quantitatively determine the rate of viability
or infectivity decay under specific stressor conditions and to
develop mechanisms and models that explain the decay rate
structure. However, there currently is no detailed quantitative
understanding of microorganism viability decay that can be
used to develop comprehensive models of degradation as a
function of the numerous physical and chemical environ-
mental conditions. Previous research does indicate that
temperature, relative humidity, radiation, acidity, oxidants,
highly reactive products of ozone and alkenes (historically
termed the “open air factor”), and other atmospheric
pollutants (e.g. nitrogen dioxide, sulfur dioxide, and form-
aldehyde) all impact microorganism viability. The mecha-
nisms of inactivation for each of these factors have been
studied but are not well understood. Semitheoretical models
that have been found to adequately represent airborne and
surface viability decay rates under some conditions and for
some microorganisms include the exponential decay model,
probability decay model (sometimes termed the ‘kinetic
model’) and the catastrophe decay model. These models will
each be presented and examined in Section 3. Additional
description of each model’s development and use can be
found elsewhere (17-19).

Although a few simple models have been developed to
explain viability loss due to specific environmental factors,
the field is very underdeveloped despite numerous studies.
There are differences in experimental design (e.g. differences
in agent growth, agent strain, aerosolization technique,
collection technique, and viability assay technique) that make
comparisons between experiments difficult and, hence,
contribute to the lack of coherent understanding and
modeling of viability degradation. More importantly, there
are some inherent limitations to understanding of viability
degradation that have implications for hazard modeling.
Fundamentally, biological agents and agent populations are
complex living entities. (Viruses are not generally character-
ized as living while outside the host. Nonetheless, their ability
to live in the host is impacted by the environmental conditions
prior to entering the host.) The response of biological agents
to environmental stressors depends on their hardiness (which
is affected by growth conditions and age) and their repair
capabilities (e.g. refs 22-25 and 16). A particular assay
technique may indicate a decrease in viability due to an
environmental stressor. However, if the apparently dead
agent is placed in more favorable conditions, it may repair
itself and still be infective. Therefore, there are significant
hurdles to determining reproducible degradation rates
through experimentation. Nonetheless, much further work
could be done to understand and to model the complex and
dynamic physiological phenomena involved in microorgan-
ism survival in the environment. Though, for the purposes
of terrorism response and decontamination modeling, this
work may be of limited value. At the time of an actual release,
detailed knowledge of characteristics impacting agent hardi-
ness (e.g. formulation and growth history) will not likely be
known well enough to accurately predict its decay. Complex
modeling without the needed input parameters would
therefore be suspect.
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3. Modeling of Viability Degradation and Hazard
To estimate the hazard resulting from a biological agent
release, mathematical models of agent viability degradation
in the environment are needed. These degradation repre-
sentations can be integrated into multiphenomena numerical
models that simulate release, transport, and deposition of
the agent. Multiphenomena models, such as the Defense
Threat Reduction Agency’s Hazard Prediction and Assess-
ment Capability (HPAC), are used for real-time terrorism
response and pre-event response planning. Mathematical
models of agent viability decay are also used to predict and
plan for decontamination after a release.

Transformation Capabilities of Current Response Mod-
els. There are numerous consequence assessment models
that could be used to plan for, or respond to, a terrorist release
of a biological weapons agent. The Office of the Federal
Coordinator for Meteorology provides a directory and
assessment of over 60 models (26). Two of the primary
operational response models for the Department of Defense
and Department of Energy, respectively, are the Hazard
Prediction and Assessment Capability and the National
Atmospheric Release Advisory Center model (NARAC) (27,
28). These models represent viability loss of a biological agent
as exponential decay, during atmospheric transport and after
surface deposition. Exponential decay can be represented
by the following equation

where V is the fractional viability for an agent with the decay

constant, k. The fractional viability is the viability at any
time, t, divided by the initial (t ) 0) viability. Decay rate
constants are determined experimentally, though the data
on which they are based are sparse. HPAC and NARAC also
include sinusoidally varying decay rate constants, dependent
on the solar zenith angle, to account for the effect of sunlight
on decay. The decay rate constant is at a maximum value at
solar noon and a minimum value between sunset and sunrise.

Exponential decay is the theoretical representation of loss
due to a first-order chemical reaction (e.g. ref 29). For a
population of microbes it assumes that a single lethal event
is responsible for death (inactivation) of a member of the
population (a cell, spore, or virion) and that the probability
of death for any member is equal, random, and constant
over time (24). Fractional viability following the exponential
decay equation is initially one and decays toward zero with
time. The decay rate is only sensitive to the decay constant,
with V decreasing faster for larger k. Figure 1a shows the
exponential decay of several different biological weapons
agents using the decay constants found in the HPAC model.
Exponential decay has been found to describe inactivation
of microbes due to exposure to active disinfectants (physical
and chemical) (30) and is used ubiquitously as a general
equation to represent decay when the details are poorly
understood. Thus, it is used to model viability degradation
of biological weapons agents in the airborne and surface
environments.

Generalized Degradation Formulations, Behavior, and
Sensitivity. In addition to the exponential decay model, Cox
and co-workers have developed probability and catastrophe

FIGURE 1. Decay models. a) shows exponential decay of several biological weapons agents, based on the HPAC decay rate constants.
The letters A, B, Q, T, P, and S indicate the agents responsible for anthrax, botulism, Q-fever, tularemia, plague, and smallpox, respectively.
b) shows probability decay for three final viability (Vf) values. c) shows first-order catastrophic decay for three sets of initial crucial moiety
concentration (B) and final crucial moiety concentration (C). d) shows second-order catastrophic decay with three sets of initial and final
crucial moiety concentrations. In b), c), and d) decay rate constant for all lines is 1.67 × 10-4 s-1, and the thick dark line is for exponential
decay.

V ) e-kt (1)
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degradation models (e.g. ref 17). Each contains two com-
ponents, a reaction kinetics component and a population
dynamics component. Both models assume that there is a
moiety within a microorganism (e.g. the cell membrane or
DNA) that is crucial to the activity (growth or infectivity) of
the microorganism. It is this moiety that is detrimentally
impacted by a particular environmental stressor. The kinetic
component of each model describes the kinetics of the
reaction responsible for deactivation of the crucial moiety
(e.g. a first- or second-order reaction). The population
dynamics component describes how a population of mi-
crobes responds to the inactivation of a crucial moiety and
how the crucial moiety is distributed in the population. The
probability and catastrophe population dynamics compo-
nents are based on probability and catastrophe theories,
respectively (17). Here, we formulate generic mathematical
expressions for each of these models in order to examine
their time behavior and sensitivity. We examine the prob-
ability model with first-order reaction kinetics as well as the
catastrophe model with first-order and simple second-order
(e.g., dimerization) reaction kinetics.

The probability model assumes that the concentration of
the crucial moiety is distributed uniformly throughout the
agent population. As the crucial moiety concentration in a
member decreases, the viability of that member decreases.
In practice, first-order reaction kinetics are assumed in
conjunction with the probability model. The probability
model has been used to represent viability loss due to
dehydration as well as other stressors (17). The first-order
probability decay model can be formulated as

where B is the initial crucial moiety concentration and A is
a proportionality constant. Figure 1b shows the viability loss
using the probability model formulation, assuming the decay
constant, k, is equal to the HPAC daytime anthrax spore
decay rate (1.67 × 10-4 per second). As seen in the figure, the
model is characterized by its approach to an equilibrium
(constant) final viability value, Vf ) e-AB. It is sensitive to
both the decay constant, k (not shown), and the final viability
value.

The catastrophe model assumes that there is a minimum
crucial moiety concentration that results in cell death.
Reduction in the moiety concentration below this minimum
results in a population “crash”. First- and second-order
reaction kinetics of moiety concentration decay have been
used within the catastrophe model to describe viability loss
due to desiccation, temperature, oxygen, and the “open air
factor” (17). The catastrophe decay model with first- and
second-order reaction kinetics can be formulated, respec-
tively, as

where C is the minimum crucial moiety concentration that
leads to a population “crash”. Setting the proportionality
constant A to 1/(B-C) in both equations yields an initial
fractional viability of one. The second-order reaction kinetics
formulation above assumes a single reacting species (e.g. a
dimerization reaction). Figure 1c,d shows viability decay using
the first- and second-order catastrophe model formulations,
respectively. Both models are sensitive to the decay constant
and the difference between the initial and final moiety
concentrations (B and C). The catastrophe models have
generally been used to simulate an initial slow decay rate

that accelerates (giving a concave down trajectory) and,
hence, a quick population “crash” to zero viability.

Comparison of Degradation Models. Figure 1 also
provides a comparison of the time behavior of the expo-
nential, probability, and catastrophe models. In order for
the models to initially follow similar trajectories, the decay
constants must be equivalent. Hence, we have shown curves
for equal k (1.67 × 10-4 s-1). Given equal decay constants,
the probability model initially follows a path slightly below
the exponential decay curve and then crosses at some time

After crossing the exponential curve, the trajectories
quickly diverge and the probability line approaches a constant
value. The larger the final viability value, the sooner the lines
cross and diverge. However, with smaller final viability values
the probability trajectory falls further below the exponential
trajectory prior to crossing. Hence, there is an optimal final
viability value (dependent on the decay constant) for which
the probability line stays closest to the exponential line for
the longest time. For the decay rate constant used in Figure
1b, this value is 0.35.

The first- and second-order catastrophe models ap-
proximately follow the trajectory of the exponential model
for early times. However, they do not experience the tailing
effects of the exponential and probability models. Instead
they approach zero at a quicker rate, experiencing accelerat-
ing decay with time. For the first-order catastrophe model
(and this decay constant), the line falls below the exponential
line for B e 2C. For B > 2C the catastrophe line starts initially
above the exponential line and then crosses it at time

For B ) 2C, the catastrophe trajectory follows the exponential
trajectory for the longest time. Given the same moiety values,
the first-order catastrophe model approaches zero more
quickly. However, the second-order catastrophe model can
follow the exponential model more closely for a longer period
of time, given the optimal target moiety values.

Time Scales of Approximate Equivalence. To understand
the impact of our current knowledge and representation of
biological agent degradation on hazard prediction and,
thereby, evaluate the tools we currently use to guide terrorism
response, we need to define the conditions under which the
differences between the degradation models are significant.
To approach this, we have looked at the time scales of
approximate equivalence of the basic models available for
airborne viability degradation. Specifically, we compare the
time scales of approximate equivalence of the probability
and catastrophe models to the exponential model. For the
probability model, τp (given in equation 5) provides a good
estimate of the time scale of approximate equivalence with
the exponential model, since the trajectories quickly diverge
after crossing. For the first-order catastrophe model, the form
of the time scale of approximate equivalence with the
exponential model depends on the difference between the
moiety values. For B > 2C, τc1g (given in equation 6) provides
a good estimate of the time scale of approximate equivalence
because the lines quickly diverge after crossing. For B e 2C,
the time scale can be determined by finding the time for
which the catastrophe line diverges from the exponential
line by a small error value, ε. This time is

V ) e[AB(e-kt-1)] (2)

V ) xA(Be-kt - C) (3)

V ) xA( B
1 + ABkt

- C) (4)

τp ) 2
k(1 - 1

AB) (5)

τc1g ) - 1
k

ln( C
B - C) (6)

τc1l ) - 1
k

ln(ε +
B - x4ε(B2 - BC) + (B - 2C)2

2(B - C) ) (7)
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For the optimal relationship (B)2C), this reduces to

Figure 2 provides a comparison of viability decay for the
four models considered here, using the HPAC anthrax spore
daytime decay constant. The A and B constants for the
probability and catastrophe models were chosen so that the
resulting viability values closely approximated the expo-
nential model values for the greatest length of time. We used
this approach because most of the decay data upon which
the decay models are based are for short times (on the order
of minutes to hours). This figure shows that for equivalent
decay constants and optimally chosen moiety concentrations,
all the models follow the same trajectory for relatively short
times (approximately 30 min for this case) but diverge to
significantly different values at intermediate times (from 30
min to a few hours for this case). For very long times (more
than 8 h for this case), the probability model gives significantly
different viability values than the exponential model (which
approaches zero), but the catastrophe models give ap-
proximately equivalent values to the exponential model (i.e.,
zero). This suggests that for short time phenomena, a simple
exponential degradation model is appropriate. Consequently,
for a release event in which the majority of the atmospheric
exposure or deposition occurs over short times, the expo-
nential model may be a good approximation to the actual
decay and can be used with confidence in response planning.
However for intermediate times, the use of the exponential
model to represent decay may detrimentally impact response
decisions if the actual decay more closely follows the
probability or catastrophe curves. This intermediate time
period could be within the transport and deposition time for
some conditions and species. For phenomena that occur
over longer times, such as long-range transport or decon-
tamination (of areas or surfaces), only the probability and
exponential model differ significantly. Hence, to mount an

effective decontamination, a planner would need to know if
the viability approached an equilibrium value (the probability
model) or would continue to decay. For example, if an
exponential model were representative of the true decay, a
cost-effective decontamination strategy could be natural
attenuation, while such a strategy would be ineffective if the
probability model is more representative. Quantitative values
for the short, intermediate, and long time scales depend
significantly on the decay constant and the target moiety
concentrations and hence are specific to each biological
weapons agent and decay mechanism. Unfortunately, there
are few data on the appropriate target moiety concentration
for each agent, and the values used are generally derived
from data with the explicit assumption of a particular decay
model. Hence, a universal guide regarding the necessity of
improved degradation models for certain response activities
(dispersion modeling versus decontamination) cannot be
determined without significantly more experimental data.

Effects of the Degradation Representation on the Hazard
Resulting from an Airborne Release. To investigate the
effects of the degradation model on outcomes for an airborne
release, we developed a simple model to estimate the
probability of death hazard areas resulting from a release.
We compare simulated hazard areas for the four distinct
degradation representations with the case of an airborne
anthrax release.

Our numerical integration calculates instantaneous down-
wind airborne concentrations of an agent at breathing height
using a simple instantaneous point source Gaussian puff
dispersion equation (e.g. ref 31):

Here c is the concentration at any time, t. The horizontal
location is defined by x (downwind distance) and y (crosswind

FIGURE 2. Comparison of decay models for ‘optimal’ constant values. The decay rate constant for all models is 1.67 × 10-4 s-1. The following
constants were used: probability model (Vf ) 0.35), first-order catastrophe model (B ) 0.1, C ) 0.05), and second-order catastrophe model
(B ) 0.155, C ) 0.05). These constants were chosen to maximize the initial trajectory overlap of each model with the exponential model,
as discussed in the text.

τc1o ) - 1
k

ln(1 + ε - x2ε) (8)

〈c(x,y,t)〉 )
S

(2π)3/2σxσyσz

exp[- 1
2

(x - ujt)2

σx
2

- 1
2

y2

σy
2

- 1
2

H2

σz
2] (9)

2740 9 ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 39, NO. 8, 2005



distance) from the source. The source location is at x ) 0,
y ) 0, and height H. S is the source strength (in mass or
number) released, and uj is the average wind speed in the
downwind direction. The symbols σx, σy, and σz are the
downwind, crosswind, and vertical Gaussian dispersion
lengths, respectively, which depend on the stability of the
atmosphere and increase with distance from the release
location. To calculate concentrations, we assumed that
horizontal dispersion coefficients in the downwind and
crosswind directions were equivalent (σx ) σy) (32) and used
the Briggs formulations (33).

The above equation assumes that the agent does not
degrade. To account for environmental viability decay for
each type of degradation, equations 1-4 were used to
calculate viability as a function of time. The cumulative dose
received by a person at any (x, y) location and time, t, was
calculated by integrating with time over the product of
concentration (assuming no decay), viability, and breathing
rate, using the following equation

where b, the breathing rate, is assumed to be constant with
time. To determine the total cumulative dose resulting from
a release at any location, equation 10 was integrated until
the puff of agent had substantially passed through the entire
horizontal domain.

To calculate the hazard area, we determined the cumula-
tive probability of death resulting from a given dose, d, at
each horizontal location. To calculate the dose-response
relationship, we used the following probit analysis equations

where p is the cumulative probability of death in a population.
This analysis assumes that the death probability density
function is log-normally distributed with dose (with mean
log LD50 and standard deviation 1/m). ú (the probit)
standardizes this distribution to a standard normal distribu-
tion, N(0,1). LD50 is the dose that corresponds to the death
of 50% of the population, and m is the probit slope. (See ref
34 for a discussion of probit analysis.)

To investigate the potential effects of viability degradation
on response, we applied the model to the case of a daytime
anthrax spore release on an urban center. Case conditions
were those of Wein and co-workers (3). This case represents
the release of 1015 anthrax spores (1 kg) from a height (H) of
100 m, with wind speed (uj) of 5 m/s and neutral stability
conditions. (The Wein et al. case implicitly assumed that all
of the anthrax spores were aerosolized in the 1-5 µm size
range and hence remain airborne for many hours without
settling. A more realistic interpretation of the case parameters
would be a 10 kg release where 10% of the spores aerosolized
in the 1-5 µm size range. Since this represents the high end
of possible biological terrorist attacks, a smaller release is
discussed later.) The breathing rate (b) was assumed to be
0.03 m3/min, representative of a man doing light work. For
viability decay, we used the HPAC daytime decay constant
for anthrax (k ) 1.67 × 10-4 s-1 = 1% per minute). Moiety
concentration values (given in Figure 2) that maximize the
time scales of approximate equivalence were used. Moiety
values were optimized in this manner because much of the
decay data are for short times. Hence, plausibly representative
models should behave similarly at short times. We used an
integration time step, dτ, of 10 s and integrated to a final
time of 15.5 h. Anthrax spore probit slope and LD50 values

of 0.7 and 8000, respectively, were used to determine dose
response (35, 36).

Figure 3 shows the cumulative death probability contours
resulting from this integration. We see from the figure that
probability decay results in a larger hazard area than
exponential decay, while the catastrophe decay models result
in smaller hazard areas. For example the difference between
models in the 5% cumulative probability of death hazard
area is on the order of hundreds to thousands of square
kilometers. For a smaller release (not shown) of 1 g (1012

spores) with all other conditions the same, the differences
are still significant, with the largest difference between the
simulated 5% death hazard areas on the order of 5 square
kilometers. For both release cases, these differences could
result in very different response decisions. If current response
models, which assume exponential decay, are used to predict
the consequences of an attack when the actual agent
degradation follows probability or catastrophic decay curves,
response decisions could be inappropriate. We will discuss
here the potential impact on two types of response decisions,
medical response and decontamination.

In the event of a biological weapons agent release, medical
intervention (e.g. dissemination and administration of
antibiotics or vaccines, hospitalization, and isolation) will
be necessary. Medical response decisions based on predic-
tions from an incorrect environmental degradation model
could be inappropriate. For example, if one uses an expo-
nential model to assess the population at risk and requiring
rapid medical treatment, but the actual decay is better
represented by a probability model, then at-risk populations
could be left untreated until symptoms begin to appear in
outlying areas. This could lead to excess death and/or
suffering. In addition, the quantity of medical supplies
required could be underpredicted with an exponential decay
model, because planners would expect a smaller hazard area
and, hence, a smaller exposed population. Conversely, if the
agent decay actually follows a catastrophe decay curve, too
many medical resources could be allocated to the presumed
affected areas. This could leave the nation vulnerable to
multiple follow-on attacks if the medical stockpiles were
overallocated to one city and unavailable to respond to follow-
on attacks at a difference location.

Response decisions concerning immediate personal de-
contamination and longer-term area decontamination would
also be negatively impacted by predictions using an incorrect
decay model. Public personal decontamination measures
and procedures (e.g. the establishment of an immediate
response wash-down facility) could be appropriate response
strategies after certain biological weapons attacks. The
misprediction of hazard areas based on an incorrect decay
model would have negative impacts on immediate personal
decontamination decisions similar to those for medical
response decisions. Potential impacts include increased
exposure and death, or, conversely, unnecessary panic, traffic
congestion, and unnecessary use of overextended material
and human response resources. Additionally, mispredictions
from incorrect decay models could negatively impact longer-
term decontamination response. For example, initial esti-
mates of the areas that need to be sampled for contamination
based on predicted surface deposition (not represented in
our simple quantitative model) could lead to a time delay in
the determination of contaminated areas and to unnecessary
economic expense from inefficient sampling. An area de-
contamination plan (such as natural attenuation or aban-
donment) based on the exponential decay model would also
be ineffective if agent decay actually followed a probability
curve. Conversely, active area and surface decontamination
measures could incur significant unnecessary expense if
natural attenuation were an appropriate response strategy.
Further, distinct environmental conditions (e.g. indoor versus

d(x,y,t) ) ∫0

t
〈c〉Vbdτ (10)

p(x,y,t) ) ∫- ∞

ú 1

x2π
exp[- ø2

2 ]dø (11)

ú ) mlog 10(d/LD50) (12)
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outdoor, land and material surface type) could each result
in distinct actual degradation curves and mathematical
degradation constants. This adds to the complications and
uncertainties regarding the effects of environmental deg-
radation on appropriate decontamination response.

4. Discussion and Recommendations
There is a real need for better understanding and modeling
of biological weapons agent viability degradation in different
environments. Despite many studies of viability decay,
understanding is fundamentally difficult due to the living
nature of the agents. Viability decay depends on physiological
factors in the agent and host that are impacted by agent
growth conditions, the use of stabilizing materials in agent
formulation, and host health. Many of these factors may be
unknown at the time of a crisis. This emphasizes the vital
need for immediate and accurate experimental sampling in
potentially affected areas during crisis response. Sampling
will provide actual, versus predicted, hazard. Predictive
models, despite their deficiencies, are needed to efficiently
provide information during a crisis (to direct sampling or
other response functions). They are also needed for longer-
term pre- and postcrisis planning. However, this work
suggests that detailed maps of the hazard footprint, provided
by current response models and research models that
represent smaller-scale structures (e.g. urban street canyon
models), are highly uncertain. This is at least in part due to
the uncertainty in our knowledge and representation of agent
environmental degradation.

This work underscores the need for three types of future
research. First, better understanding and representation of
viability decay in the environment can only come from
detailed phenomenological microscale studies of microbio-

logical system behavior, system responses to environmental
stressors, and system repair mechanisms. Second, more work
is needed to relate these basic science studies to param-
etrizations appropriate for response modeling. This will
require more experimental data, particularly over longer time
scales (from hours to months). Third, terrorism response
models should provide probabilistic representations of
hazard. These should be based on probabilistic representa-
tions of the uncertainties in the input parameters and model
physical parametrizations, including agent environmental
viability degradation.
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