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Abstract

Let P be a naturally labelled, ranked (graded) poset of ramkd cardinalityz. Let H; be the
set of linear extensions a? with k descents. An explicit bijection betweé#y, and H,_1_,_; is
constructed using the involution principle €0k < n —1—r). A problem of Richard P. Stanley from
1981 is thereby solved.
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1. Thefiveof hearts

Major Percy MacMahon, that great British cométorialist of the turn of the last cen-
tury, proved the following result in his classiombinatory Analysi§ll, Section IV,
Chapter V, Sect. 179-180, pp. 212-213].

Takem different numbers (say, the integers 1 through each number repeatedt 1
times, so that there are= m(r + 1) numbers in all. Consider all possible ways of listing
thesen numbersin arow; if = 0, we are just listing all possible permutationgobbjects.
(Knuth uses the analogy of shuffling a deck of cards, where suit is ignored: in this case,
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Table 1.1
MacMahon's theorem fom =2 andr = 2

Hop Hy Hp H3
111222 112122 221211 212121
112212 212211
112221 212112
121122 221121
122112 211221
122211 211212
211122 122121
221112 121221
222111 121212

m =13 andr =3[9, p. 43].) For each listing, count the number of “descents,” the number
of places where a bigger numbiermediatelyprecedes a smaller number.
For instance, ifn = 2 andr = 2, there are 20 possibilities (see Table 1.1).
Let H; be the set of sequences with exadtlgescents and lét, = | Hi|, the number
of such sequences. Table 1.1 shows that= h3 and h1 = hp, that is,the “A-vector”
(ho, h1, h2, h3) is symmetricMacMahon proved in general that

hi=hp1 4k O<k<n—1-r).

MacMahon's proof used generating functiohg did not directly establish a one-to-
one correspondence betwe#ip and H,,—1_,—. Indeed, writes Knuth, “No very simple
correspondence is evident” except in trivial cases. (Knuth then goes on to establish such
a bijection—an algorithm, really—using Foata’s idea of expressing multipermutations as
products of cycles [9, pp. 24-29, 43-44].)

A curious result, to be sure—"quite surprising,” Knuth says—but does it tell us anything
about anything else? That is, doegdneraliz€

Generalizehow? one might ask. To answer that question, we must translate MacMa-
hon’s result into the language of ordered sets.

The plan of this paper is as follows. All definitions are contained in Section 5. In Sec-
tion 2 we reveal Stanley’s generalization of MacMahon's theorem. In Section 3 we state
Stanley’s problem. In Section 4 we mention related results from the literature. In Section 5
we solve Stanley’s problem. In Section 6 we illustrate our solution with an example. In
Section 7 we describe avenues for further research. In the appendix we illustrate posets
described in the main body of this work. In Section 1 we give a plan of the paper

2. Everything | needed to know | learned from the four-element posets
Instead of multipermutations of words with the letters

1,...,1,2,...,2,3,...,3,...,m,...,m,

let us usepermutation®f the set 12, ..., n. The translation is illustrated in Fig. 2.1.
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1 2 3 6
1 2 2 5
1 2 1 4

Fig. 2.1. Translating MacMahon's theorem to the language of posets.

In any shuffling, such as 211212, replace the first 1 by 1, replace the second 1 by 2,
replace the third 1 by 3, ..., replace ttre+ 1)st 1 byr + 1; replace the first 2 by + 2,
etc.; thus 211212 becomes 412536. Of course, we cannahgeermutation om letters
this way; we only get a permutation if, wheneyek o’ (o, p’ elements of the poset on
the right of Fig. 2.1), the numerical label pfappears to the left of the label fpf. Such
a permutation is called Enear extensiorof the poset. (It is clear that a shuffling has
descents if and only if its translate does.)

A labelling of the elements of a finite poset with the letters.1, n so that 123--nis a
linear extension is calledraatural labelling Given a finite poseP with a natural labelling,
we can defing?;, to be the set of linear extensions (permutations compatible with the order
on P) with k descents, and set = | Hy| as before.

Figure 2.2 shows a four-element poset with an unnatural labelling (illegal in some
states); that same poset witto different natural labellings; and their corresponding sets of

1 3

(a) The posetv with an unnatural labelling.

3 4 1234  Odescents
2134 1 descent
1243 1 descent
2413 1 descent

1 2 2143 2 descents

(b) The naturally labelled posét hashg=1,h1 =3,hp =1.

4 2 1234  0Odescents
1324 1 descent
1342 1 descent
3124 1 descent

3 1 3142 2 descents

(c) The posetV with another natural labelling.

Fig. 2.2.
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linear extensions. Note that, while teet H; depends on the natural labelling, the number
hy does not. (See, for instance, [20, Theorem 3.12.1].)

Figure A.1 in the appendix lists some other posets along with therectors
(ho, h1, h2,...). (Strictly speaking, these are thevectors of the order complexes of the
lattice of down-sets of these posets; see [1, Section 5.1] and [23, Section 8.3].)

Note that whenP is an antichain, we get the classieallerian numbersand also note
that a standard Young tableau is just a linear extension of a certain poset [14,16, pp. 43—44].

To illustrate, in Table A.1 we list all 24 penmations on four letters (Fig. A.1(f)), and
mark those that are not linear extensions of the naturally labelled poset of Fig. A.1(g). Ta-
ble A.2 lists the linear extensions of the naturally labelled poset of Fig. A.1(k); Table A.3
the linear extensions of the posets of Figs. 2.1 and A.1(l); and Table A.4 the linear exten-
sions of the poset of Fig. A.1(m).

We note that, for each pos&, the index of the largest non-zekg isk =n —1—r,
wheren = | P| andr + 1 is the cardinality of the longest cing(totally ordered subset). (See
the easy Lemma 5.1 or [16, Theorem 16.1].) Moreover/jthvector (ho, ..., hy,—1—,) iS
symmetric just wherP isranked(graded, that is, when every maximal chain has the same
cardinality. This is the content of Stanlsygeneralization of MacMahon’s theorem.

Theorem (Stanley)Let P be a finite naturally labelled poset. LE(P) be the set of linear
extensions oP, and, for everyr € L(P), letd(sr) be the number of descentsmofLet M
bemaxd(x) | # € L(P)}. Then the following are equivalent

() hip =hpy—r forO<k < M,
(i) P isranked.

3. The statement of Stanley’s problem from the 1981 Banff Conference on Ordered
Sets

At the 1981 Banff Conference on Ordered Sets [13, p. 807], Stanley said, “About ten
years ago | proved (the above result).” He went on to pose the following

Problem (Stanley, 1981)Find a combinatorial proof of this theorem. More precisely,
when (ii) holds describe explicitly a bijectiofi: L(P) = L(P) such thatd(z) = M —
d(f(@m)) forall w € L(P).

(Stanley added, “It would even be interesting to do this for the daser x s (the
product of anr-element chain and airelement chain).”)
We solve Stanley’s problem by constructing a bijection

Dy Hy — Hy—1-r—

forke{0,...,M =n—1-—r}where| P| = n and every maximal chain hast 1 elements
(Theorem 5.8).
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4. Background and previousresults

Basic references on posets are [2] and [20, Chapter 3]. We will not assume a poset
is ranked without explicitly saying so. Because of the vast literaturef arectors and
h-vectors of polytopes and posets, permutation statistics, etc., we limit ourselves to re-
calling results most directly related to the present work, results concerning inequalities for
h-vectors (which are also called-vectors). Relevant papers (albeit not essential for under-
standing this work) include the very interesting [15], as well as [6,7] (see its Corollary 2.6)
and [8] (see its Theorem 2.4), where Hibi shows, invoking a commutative algebra result
[19, Theorem 2.1], that

M
hothi+--+he<hy+hy-1+--+hy—i (0<k< {-J)

He states the following
Conjecture (Hibi, 1991) For 0<k < [ 4],

hi <hmy—r and hoéhlé---éhL%J.

In the proof of [5, Theorem 1.2], Gasharov provides a bijection fi@pto H,_1—,
when the ranl of the posetis 1 or 2, where we use the definition of rank that says that
an antichain has rank 0. (He also proves that/theector is unimodal.) He writes, “The
proof that we provide for Theorem 1.2 can be considered combinatorial, although we do
not explicitly exhibit the necessary injections as this would be rather cumbersome.”

Reiner and Welker [12] prove that, whéehis ranked, the:-vector is symmetric and
unimodal by invoking the (decidedly non-trivigd} Theorem for simplicial polytopes [18];
but this is not a combinatorial proof.

Fix a posetP of cardinalityn. Let £2(P, m) denote the number of order-preserving
maps fromP to anm-element chain and l&® (P, m) denote the number atrictly order-
preserving maps. These are polynomialsirfthe order polynomialand thestrict order
polynomial respectively). Stanley’s reciprocity theorem for order polynomials ([17, Propo-
sition 2.1], [20, Corollary 4.5.15]) states that

Q(P,m)=(=1"R2(P, —m).

(Kreweras concedes being initially unawareSténley’s results, but his exposition is still
interesting [10].) Though partially hiddeour Proposition 5.5 really amounts to analyzing
the reciprocity theorem and its ingredients from Stanley’s theo®-pfrtitions and con-
siderations like those in [16, Section 18]. (We obtain the final bijection using the involution
principle.)

Thus we see that Stanley could have solved Stanley’s problem by reading Stanley.
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5. Thesolution to Stanley’s problem

We will use the following notation and definitions throughout this section and the next.
All numbers will be non-negative integers. Far> 0, let [n] :={1,...,n} and let
[n]o:={0, ..., n}. (Ifwe have an expression lik4, ..., n} wheren = 0, then we mean the
empty set.) LetS| denote the cardinality of the finite s&tIf X, Y, X', andY’ are sets with
XNY=¢,andif f: X — X' andg : Y — Y’ are functions, defing Ug: XUY — X' UY’
to be the function such that, for everg X U Y,

_Jf@ ifzeX,
A multisetis a family with repetitions (s¢1, 2, 2, 3} £ {1, 2, 3} as multisets). We define
cardinality, union, and complementation for multisets appropriately, so

[{1,2,2,3}| =4, {1,20U{2,3}={1,2,2,3}, and
{(1,2,2,3}\ {1,2 ={2,3}.

Fork >0, let ((f)) denote the family of cardinality multisets with elements drawn
from the setS; if dq, ..., d; are numbersi(> 0), the notatior{dy, ..., di}< for the corre-
sponding multiset indicates that

d1<--- < dy.

Let P be a finite alphabet (set). 16 is a wordoy - - - o with k letters & > 0; o1, .. .,
oy € P), thelength |w| of w is k; we say the lettet; appearsin w (i € [k]); and, if
1<i < j <k, thato; appears to the lefdf o; inw. If wy =o01---0r andwz =71 --- 77 are
words &,/ >0;01,...,0%, 11,..., 77 € P), then theconcatenatiorf w1 andw,, denoted
wiwy, isthe wordoy - - o171+ 7.

A non-empty finite poseP is rankedof rank r if all maximal chains (totally ordered
subsets maximal with respect to set-inclusion) have the same cardinalil; therank
r(p) of an elemenp € P is the rank of the subposgt’ € P | o’ < p}.

Fix a finite ranked poseP of cardinalityn > 2 and rankr. Fix an order-preserving
bijection from P to the chain[n] and label the elements @t as p1, o2, ..., p, SO that
pi 1 (i € [n]). (This is called anatural labelling)

If

W = Piy - Pig
is a word drawn from the alphab&t (wherek > 0; iy, ..., i € [n]), then we sayw is in

increasing ordelif i1 < --- < ig; andin decreasing ordeif i1 > -- - > i.
A linear extensiorof P is a word

wzpllpln (ila"'aiﬂe[n])
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with n distinct letters such that, f < o’ in P, thenp appears to the left g6’ in w. The

descent seD(w) of such a linear extension is the set{j € [» — 1] |i; > i;11} and the

ascent setd(w) is {j € [n — 11 | i; < i;11}; we sayw hask descentsaand! ascentsf

k=|D(w)| andl = |A(w)|. Let H be the set of linear extensions Bfwith k descents.
For the next three paragraphs, fix [n — 1 —rlo. If I <k, let

Dy = {(w, D) e H; x (([” ; 1])) ‘ D(w) C D}

Ap = {(v, A) € Hy1-r_1 % (([’r’;;])) ‘ A(v) C A}.

Let Dy := Ué{:O Dy and A := U;(:OAk,l-
For (w, D) € Dy, whereD = {d1, ..., di} <, let thecanonical factorizatiorof w be

and

w=wp--- Wk
where, for each € [k],
di =|wo---w;_1].

For p € P, defineo(p) to be the number € [k]o such thatp appears inv;.
For (v, A) € Ax, whereA = {ay, ..., ari}<, let thecanonical factorizatiorof v be

V=00 Urik
where, for eachy e [r + k],
aj=|vo---vj-1|.
Forp € P, defineg(p) to be the numbey € [r + klo such thalp appears irn;.
Lemmab.l. Forie{n—r,...,n—1}, H =0.
Proof. There is a maximal chain
Pig <+ < i,

whereio, ..., i, € [rn]. Thenig < --- < i, SO any linear extension @ contains at least
ascents. O

Lemmab.2. Letk € [n — 1 —r]o.
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(1) Let(w, D) € Dy and letw = wq - - - wy be the canonical factorization.
Then, fori € [k]o, w; iS in increasing order.

(2) Let(v, A) € A; and letv = vg - - - v, be the canonical factorization.
Then, forj € [r + k]o, v; is in decreasing order.

Proof. (1) This follows from the fact thaD(w) € D. (2) This follows from the fact that
AW CA. O

Lemma5.3. Letk € [n — 1 — r]o and supposé€v, A) € Ai. Then forp, p’ € P such that
o < o', we have

q(p) —r(p) <q(p’)—r(p).

Proof. If p < p’, thenr(p) < r(p’), so there is a saturated chain

= 0: e . —
P = Pipy < < Piyyy =P

Whereir(p), cippn € [n] with ir(p) <+ <irp). By Lemma 5.2(2),
q(0) =q(pi,) <---<qpi, ) =4q(p")
and hencg (o) —q(p) = r(p") —r(p). O

Corollary 5.4. Letk € [n — 1 — r]p and supposé&v, A) € A;. Then for allp € P, 0 <
q(p) —r(p) <k.

Proof. There existo’, p” € P such thatp” < p < p’ andr(p”) =0 andr(p’) =r. By
Lemma5.3,

0<q(p")=q(p") =r(p") <ap) —r(p) <q(p) —r(p) < +k)—r=k O

Proposition 5.5. Fix k € [n — 1 —r]o.

Define a mappy : Dx — Ay in the following manner. Givetw, D) € Dy, define a se-
guence of wordsy, ..., v,4 by lettingp € P appear in the word,(,)+,(,) and writing
each word in decreasing order. Let=vg - - - v+, and, for eachy € [r + k], let

aj:=lvo---vj-1f

and letA ={az, ..., ari}. Setpr(w, D) = (v, A).

Define a map/y : Ay — Dy in the following manner. Givefw, A) € A, define a se-
guence of wordsuo, ..., wi by lettingp € P appear in the wordw,,)—,(,) and writing
each word in increasing order. Let = wg - - - wg, and, for each € [k], let

di = wo- - wj-1]

andletD ={dx,...,d;}. Setyy (v, A) = (w, D).
Theng, andyy are well-defined, mutually-inverse bijections.
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We illustrate this bijection in Section 6, which the reader might wish to read while going

through the proof below.

Proof. In the first part of the proof, we show tha is well defined. Selectw, D) €
Dk. Let w = wg - - - wi be the canonical factorization and ket= vg - - - v be as in the
statement of the proposition. AsQo(p) + r(p) < k + r for eachp € P, v contains each
letter of P exactly once.

We show that is a linear extension. Let, o’ € P be such thap < p’. Thenr(p) <
r(p’) ando(p) < o(p’) (sincew is a linear extension), sa(p) + r(p) < o(p’) + r(p’).
Thusp appears to the left gf’ in v.

By Lemma 5.1]A(v)| > r; and clearly|A(v)| < r + k sincev; is in decreasing order
for eachj € [r + k]o. Lettingl := |A(v)| — r we seethat € H,,—1—,_;.

BecauseD C [n — 1] andn > 1, we know|wg|, lwi| > 1. The first letter imvg must
have rank 0 and so will be ing; the last letter inw; must have rank and so will be in
vr4k- HenceA C [n — 1]. Because each ab, ..., v,4« is in decreasing orded (v) C A.
Hence(v, A) € Ai ;. Note thatvg - - - v, IS the canonical factorization af

In the second part of the proof, we show tljatis well defined. Seledtv, A) € A;. Let
v=1g--- v+ be the canonical factorization and let= wg - - - wy be as in the statement
of the proposition. These words are well defined by Corollary &.4pntains each letter
of P exactly once.

We show thatw is a linear extension. Let, p’ € P be such thap < p’. By Lemma 5.3
and the fact thatv, ..., wi are in increasing ordep, appears to the left g’ in w.

The fact thatwy, ..., wy are in increasing order also says thatw) C D. Because
A C[n—1] andn > 1, we know|vg|, |v,+«| = 1. The first letter ofug must have rank 0
and so will be inwp; the last letter ofv, ., must have rank and so will be inw;. Hence
D C [n — 1] and thuSw, D) € D;. Note thatwg - - - wy, is the canonical factorization af.

Now again selectw, D) € Dy and let(v, A) = ¢ (w, D) and(w’, D') = ¥ (v, A). Let
w=wp---wi, w =wpy---w;, andv = vg- - - v-4x be the canonical factorizations ef,
w’, andv, respectively. For € [k]o, p € P appears irw; if and only if it appears in; ()
if and only if it appears inv}; thusw; = w;. Hencew = w" andD = D'.

Select (v, A) € A, and let (w, D) = ¥ (v, A) and (', A") = ¢ (w, D). Let v =
Vo Uk, V=05 v;+k, andw = wg---wi be the canonical factorizations of v/,
andw, respectively. Forj € [r + klo, p € P appears inv; if and only if it appears in
wj—r(p) if and only if it appears in’;; thusv; = v’. Hencev =v" andA = A". O

Lemma 56. Let k,l € [n — 1 — r]o wherel < k. Suppose there exists a bijection
®;1: Dy — App with inversed ;i A — Dy .
Define a map
@i Drp —> Ak
as follows for all (w, D) € Dy, @k 1(w, D) := (v, A) where

(v, A()) =P (w, D(w)) and A=A(w)U[D\ D(w)]

(a union of multisefs
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Define a map
i1t Akt — Dry
as follows for all (v, A) € Ak, Wk.i(v, A) = (w, D) where
(w, D(w)) =¥ (v,A(v)) and D=Dw)U[A\ A(v)]

(a union of multisefs
Thendy ; and¥; ; are well-defined, mutually-inverse bijections.

Proof. First we show that®y ; is well defined. With(w, D) € Dy ; as above|A| =
[Aw)|+ |D|—|Dw)|=r+1l+k—-1=r—+k.

Next, we show that; ; is well defined. With(v, A) € A ; as above|D| = |D(w)| +
Al — |A)| =1+r+k—(+1)=k.

Now suppose

(w,D)€Dry, (v, A) =P (w, D), and (w', D)=, (v, A).
Clearlyw = w’ (becaused; ; and¥; ; are inverses). Also,

D'=Dw)U[(A)U[D\Dw)])\ A()]
=Dw)U(D\ D(w))=D

sinceD(w) € D.
Finally, suppose

(W, A) € Ars, (w,D) =¥ (v,A), and (v,A) = (w, D).
Clearlyv =v'. Also,
A=A U[(Dw)U[A\AW)])\ D(w)]
=AW U(A\A(v)=A

sinceA(v) CA. O

Lemma 5.7 (Involution Principle, g.v. [4,20, §2.6]Let X, Y, X', and Y’ be finite sets
withXNY=@g=X'NY'.Letdx:X — X' andg: X UY — X' U Y’ be bijections with
inversesly : X' — X andy : X' UY' — X UY, respectively.

Define a map®y :Y — Y’ as follows. For ally € Y, lett > O be the smallest non-
negative integer such that

((cb oWx) o ¢) =y eY

(such ar must existand let®y (y) :=y'.
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Define a mapby : Y’ — Y as follows. For ally’ € Y/, letz > 0 be the smallest non-
negative integer such that

((1// o®y) o 1//)()/) =:yeY

and letwy (') :==y.
Then®y and¥y are well-defined, mutually-inverse bijections.

Theorem 5.8. Let P be a finite ranked poset of cardinality> 2 and rankr. Letk e
[n—1-r]o.

Construct an explicit bijectior®y  : Hy — H,—1—r—x in the following manner(\We
identify H; with D; ; and H,_1_,_; with A4; ; forall I <k.)

If K =0, use the mapgyo of Proposition5.5.

If £k > 1, first construct the bijection®; ;: Hy — H,_1_,—; for I € [k — 1]o; then
construct the bijection®y ;: Dy — Ax,; as per Lemmdb.6. Use the involution prin-
ciple of Lemma5.7 with X = S0 Dy, ¥ = Hy, X' = U3 Aer, Y/ = Hym1o 1
@x = /=3 ®r.1, and¢ = ¢ (the map of Propositios.5).

Thus we solve the problem of Stanley from the 1981 Banff Conference on Ordered Sets.

6. An example of the bijection solving Stanley’s problem

Consider the ranked poset of Fig. 6.1 with= 6 andr = 2. Its h-vector is(1, 6, 6, 1);
see Table 6.1 for all of its linear extensions.

3 6

ho=1 h1=6 hp=6 h3z=1
2 5 n==6 r=2
1 4

Fig. 6.1. A poset used to illustrate Theorem 5.8.

Table 6.1
Linear extensions of the poset of Fig. 6.1

Hp Hq H> H3

123456 124356 415236 415263
124536 412563
124563 412536
142356 145263
145236 142563
412356 142536
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Fork = 0 we have
Do,o = {(1234560)} and Ago={(41526324)}.
(For clarity, we leave out the braces and commas when listing the multisets.) We leave it to
the reader to guess the mapof Proposition 5.5 (and hence the m&go of Theorem 5.8).
Fork =1, we have
D1o={(1234561), (1234562), (123 4563), (123456 4), (12345 65)}

and

D11 = {(124 356 3), (1245 36 4), (12456 35),
(14 23562), (145 2363), (4 12356 1) }.

We also have

Aio= {(4 15263124), (41 52 63224, (415263234,
(4152 63244),(41526 3 245)}

and

A11={(415236245), (412563234, (412536235),
(145263124), (142563134, (14253 6135)}.
We describe the mag, of Proposition 5.5 by using spaces to delineate the factors in the

canonical factorizations. (See Table 6.2.)
The mapd1 o of Lemma 5.6 is given by

Table 6.2
The mapg,
$1

D wo w1y — vg V1 V2 v3 A
1 1 23456 1 4 52 63 124
2 12 3456 1 42 5 63 134
3 123 456 1 42 53 6 135
4 1234 56 41 2 53 6 235
5 12345 6 41 52 3 6 245
3 124 356 41 2 5 63 234
4 1245 36 41 52 63 244
5 12456 3 41 52 6 3 245
2 14 2356 41 52 63 224
3 145 236 41 5 2 63 234
1 4 12356 4 1 52 63 124
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(1234561) 222 (4 1 52 63124)
(12 3456 2) 2X (41 52 63224)
(123 4563) 2 (415 2 63234
(123456 4) 2X (41 52 63244
(12345 65) 22 (41 52 6 3245

Finally, we can computeé; 1 using the involution principle:

124356 2% 412563
12
124536 %% (4152 63244 2% (1234564) % 412536
124563 % (415263245 29 (1234565) -2 415236
142356 % (41 52632249 29 (1234562) - 142563
145236 % (415263234 29 (1234563) -* 142536
412356 "% (415263124 2% (1234561) 2% 145263
Hence the bijection
$11:H1— Hp
is given by
12435671 412563

124536721 412536
12456324 415236
142356711 142563
145236721 142536
412356221 145263

7. Thefutureof an injection

While we have solved the problem of Stanley, our results could be improved in three
ways. First, our bijection works for an arlatly ranked poset with an arbitrary natural
labelling, but there may be a more “natural” bijection for particular types of ranked posets
with particular natural labellings. So it would still be satisfying to construct the bijection for
a product of two chains. Second, the part of our bijection where we invoke the involution
principle can probably be described even more explicitly in a manner reminiscent of jeu de
taquin (although, needless to say, withthg same far-reaching consequences).
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Third, one could perhaps prove thiat < h,—1-,—x for an arbitrary (not necessarily
ranked) poset of cardinality and height (k < L%J) by refining our solution to Stan-
ley’s problem.

A. Poset menagerie

(o) (o)
n=2 r=0

(@)

ho=1

n=2 r=1

(b)

ho=1 hi1=4 ho=1

] (o] (o)
n=3 r=20
(c)
° ho=1 h1 =2
n=3 r=1
(d)
ho=1 h; =1
n=3 r=1
(e)
hozl h1=11 h2:11 h3=1
(o] [e] o o]
n=4 r=20
®
3

° ° ho=1 h1 =7 hy=4
2 4

©

Fig. A.1. Examples ofi-vectors.
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h():l h1:8 h2:11 h3:2

n==06 r=2

5 6
3[ :: 14
1
(k)
37 6
ho=1 h1=8 ha=9 hz=1

9 5 n==~6 r=2
1 ©4

4 5

2 3

U}

ho=1 hi=6 hea=6 hz=1
n=>5 r=1

(m)

Fig. A.1. (Continued.)
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ho=1 h1 =15 hg =50
\ hs3 =50 hs=15 hs=1
o\

()
Fig. A.1. (Continued.)
Table A.1

Linear extensions af + 1+ 1+ 1 and
1+ 1+ 2 (the latter unmarked)

Ho Hy Hp H3
1234 2134 4312 4321
3124« 4213
4123 3214
1324 423%
1423 324%
2314« 4132
2413 3142
3412 2143
1243 342%
1342 243%
2341 1432
Table A.2
Linear extensions of the poset of Fig. A.1(k)
Ho Hy Hp H3

123456 123465 124365 143265
123546 132465 214365
124356 132546
124635 134265
132456 142365
134256 143256
142356 213465
213456 142635

213546
214356
214635
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Table A.3
Linear extensions of the posets of Figs. 2.1
and A.1(l) (the latter unmarked)

Hop Hy Hp H3

123456 124356 451623 415263
124536 415623
124563 415236
142356 451263
145236 412563
145623 412536
412356 145263
451236 142563
456123 142536

Table A.4
Linear extensions of the poset of Fig. A.1(m)

Hp Hq H> H3
12345 13245 13254 32154
21345 21354
12354 32145
31245 31254
23145 23154
23514 32514
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