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1 Introduction

Price stability has become an important mandate of many central banks around the world

since the 1980s. It is now widely accepted that decision making becomes more complex in high

and persistent inflation scenarios, as inflation may cloud public confidence as well as economic

agents’ assessments of future economic activity (Golob, 1994). Moreover, low inflation seems to

promote growth and support sustainable employment in the long run (Bernanke, 2007). Thus,

it is not surprising that a lot of effort has been devoted to the development of models that can

accurately explain the dynamics of inflation rates.

In this article we contribute to the inflation literature by proposing and estimating a mul-

tivariate model of inflation with conditionally heteroskedastic common and country-specific

components. The model is estimated in one-step by means of Quasi Maximum Likelihood

(QML) which allows us to take time-series and cross-sectional information of (time-varying)

first and second order moments into account and jointly estimate all parameters of the model.

We analyze various specifications of the full model both in-sample and out-of-sample.

Our inflation model is motivated by the fact that it has become more difficult in the last

decades to find economic models which can accurately describe the ex-ante dynamics of inflation

(Stock and Watson, 2007). A possible reason given in the inflation literature to the ‘unpre-

dictability’ phenomenon is that inflation expectations seem to be now anchored over the long

term, that is, inflation is relatively insensitive to the arrival of new information. Rather, agents

appear to stick to their long-run reference of inflation when making their forecasts (Mishkin,

2007). This, in turn, would explain why empirical studies have found that the Phillips curve

has become flatter and why oil shocks and other macroeconomic variables have relatively less

explanatory power than in the past (Hooker, 2002). Nevertheless, while inflation expectations

seem to be relatively more anchored than in the past, some suggest that the anchoring is some-

what imperfect. In other words, agents seem to set expectations to a long term trend but

unanticipated shocks can cause temporary deviations from this trend (Gurkaynak et al., 2005).

Stock and Watson (2007) (SW henceforth) formalized an elegant statistical model that

accurately describes the dynamics of inflation in the United States (US) and that sheds light

on the hypothesis of imperfect anchoring of expectations. The SW model decomposes inflation
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rates in the US into two components: a permanent and a transitory component which can also

be interpreted as a time-varying trend and a cycle. Following Bernanke (2007), the SW model

shows that there has been a moderation in the level of variability of trend inflation since the

1980’s suggesting that innovations to inflation expectations are much more likely to be transitory

now than three decades ago. However, the variability of the trend in inflation, although lower,

remains positive which suggests that long-run expectations are not perfectly anchored.

Along the lines of SW, a study by Broto and Ruiz (2009) (BR henceforth) finds evidence that

inflation rates can be modeled by means of conditionally heteroskedastic permanent and transi-

tory components. Interestingly, BR find that volatility of inflation seems to exhibit asymmetric

effects, that is, high (low) inflation today leads to high (low) volatility of inflation tomorrow.

This finding can be related to the literature on inflation uncertainty which suggests the that

high inflation can increase inflation uncertainty (Friedman, 1977; Golob, 1994).

An interesting study by Ciccarelli and Mojon (2010) (CM henceforth) recently documented

comovements of inflation amongst OECD economies. We interpret their result as evidence of a

common time-varying trend of inflation, very much in the spirit of the SW and BR decompo-

sitions but with a more concrete economic interpretation: global inflation rates are driven by

a highly persistent common stochastic trend. Moreover, similar to the finding by Cogley et al.

(2010) for the US, CM show that inflation gaps of their model (given by the spread of global in-

flation rates to the common global trend) shows some persistent autoregressive properties. The

model by CM not only provides evidence on international comovement and error correction of

inflation but also seems to outperform standard benchmarks (such as an autoregressive model

of inflation and a random walk) in out-of-sample analyzes.

Cecchetti et al. (2007) (CHKSW henceforth) use the SW model to extract smoothed esti-

mates of the transitory and permanent components of inflation for the G7 countries, as well

as their time-varying volatilities. Smoothed estimates of the permanent components are very

similar across G7 countries, reinforcing the evidence of a global trend in inflation reported by

CM. Moreover, CHKSW also provide some evidence on comovements in the volatility of the

permanent components of global inflation rates. In fact, the results of CHKSW document the

‘Great Moderation’ of inflation volatility in most of the G7 economies. Thus, it seems that the
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comovement of global inflation rates is not only apparent in their first order moments but also

in their second order moments.

Overall, the results of the studies by SW, BR, CPS, CM and CHKSW seem to point to the

same direction: inflation rates in various countries can be described by a permanent-transitory

component specification and the permanent component along with its volatility seem to be

common amongst OECD economies. The time-series evidence also fits well to the hypothesis

on (imperfect) anchoring of inflation expectations over the long-term which partially explains the

so-called ‘Great Moderation’. In addition, if global and national inflation volatility are indeed

time-varying, global models of inflation with time-varying volatility can also contribute to the

burgeoning literature on inflation uncertainty. An accurate estimate of inflation uncertainty

would imply that consumers and businesses could better plan for the future (Golob, 1994).

The specification proposed in this study is rich in the sense that it incorporates all the

empirical determinants of inflation rates set forth by SW, BR, CPS, CM and CHKSW into

a compact global inflation model. To preview some of our results, we find that the estimated

common inflation component can explain on average more than 50% of the variability of national

inflation in the G7. The estimated volatility of the common inflation component captures the

international effects of the ‘Great Moderation’ and of the ‘Great Recession’. Various model

specifications considered fit well the first and second order dynamics of inflation in the G7. The

model also shows promising capabilities for forecasting inflation in several countries.

The article is organized as follows. In the next section we describe our empirical model.

Section 3 describes the data set used and the estimation methodology employed. Section 4

presents the forecasting design. Section 5 discusses the results of our analysis and the last

section concludes with some final remarks.
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2 The model

We consider the following specification of inflation, denoted πit, for i = 1, ..., N cross-sectional

members and t = 1, ..., T time periods:

πit = λigt + fit, (1)

where gt and fit are, respectively, common and country-specific latent components and λi is the

so-called loading coefficient. The components gt and fit follow autoregressive processes of order

one, i.e.

gt = (1− ρ)µ+ ρgt−1 + εt, (2)

fit = φifit−1 + uit, (3)

where ρ and φi are parameters such that |ρ| < 1 and |φi| < 1, and the disturbance terms

εt, uit and ujt, i 6= j are uncorrelated and have zero-mean. Note then, that E[πit] = λiµ

is the unconditional mean of each inflation rate πit in our set up in the case |ρ| < 1. The

common component gt follows from the time series evidence on the existence of a world trend

documented by CM whereas the autoregressive country-specific component fit stems from both

CM and CPS who show that inflation gaps display serial correlation. Our set up for inflation

implies the following error correction model (ECM) obtained from the above system for each i:

∆πit = ϕifit−1 + λi∆gt + uit, (4)

where ∆πit = πit−πit−1 is the change in inflation, fit = πit−λigt is the so-called error correction

term, ∆gt = gt − gt−1 is the change in the common inflation component and ϕi = (φi − 1)

is the error correction parameter. In a nutshell, the ECM suggests that inflation rates are

mean-reverting to their long-run reference level gt with the speed of adjustment given by ϕi.

Furthermore, note that if we assume a random walk specification for the common component gt,

i.e. ρ = 1, then the variables πit would be integrated of order one, denoted I(1), as they would

be explained by a non-stationary component (gt) and a stationary component (fit). However, as
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long as ϕi < 0 (|φi| < 1), model (4) is stable and country inflation πit is said to be cointegrated

to the common inflation component gt with cointegrating (long-run) parameter λi, denoted

CI(1,−λi) for short. It is also worth noting that in the cointegration case ρ = 1, the shock

εt has a permanent effect on inflation πit while the country specific shock uit has a temporary

(mean-reverting) effect.

Following the empirical evidence documented by SW, BR and CHKSW, we assume that εt

and uit are conditionally heteroskedastic:

εt ∼ N(0, vt), (5)

uit ∼ N(0, ωit). (6)

Along the lines of BR who find evidence of asymmetry in inflation volatility (higher (lower)

inflation today can generate higher (lower) inflation volatility tomorrow), we employ a

Quadratic Generalized Autoregressive Conditionally Heteroskedastic specification of order one

(QGARCH(1,1) henceforth) for vt and ωit, i.e.

vt = α0 + α1ε
2
t−1 + α2vt−1 + α3εt−1, (7)

ωit = βi0 + βi1u
2
it−1 + βi2ωit−1 + βi3uit−1, (8)

where the parameters α0, α1, α2, α3 and βi0, βi1, βi2, βi3 satisfy the usual conditions to guarantee

positivity of vt and ωit (Sentana, 1995). Under the QGARCH(1,1) specification, conditional

variances have different responses to shocks of the same magnitude but different sign (Broto

and Ruiz, 2009).

Note that the empirical model (1)-(6) is general enough to nest other interesting specifica-

tions analyzed in previous studies. For instance, when |ρ| < 1 and εt and uit are homoskedastic,

we end up with the global specification proposed by CM.1 Similar to BR, we may obtain a

permanent-transitory component specification for each country from the above system if gt = git,

ρ = 1, φi = 0 and λi = 1. Moreover, if gt = git, ρ = 1, φi = 0 and λi = 1, but vt and ωit

1Note, however, that CM do a multi-step approach to estimate their error-correction model whereas our
approach estimates all parameters jointly.

6



have an integrated stochastic volatility formulation we arrive at the specification used in SW

and CHKSW.

Collecting the equations (1)-(8) for all i leads to the following compact state-space repre-

sentation of a multivariate inflation model with conditionally heteroskedastic disturbances:

Πt = ASt, (9)

St = BSt−1 + ξt, ξt ∼ N(0, Qt), (10)

where Πt = (π1t, ..., πNt)′ is the vector of inflation rates, St = (gt, f1t, ..., fNt)′ is the state vector

containing the common (global henceforth) component and the country-specific components,

and ξt = (εt, u1t, ..., uNt)′ is the vector of state disturbances. The matrix A = [Λ, IN ] links the

observations to the unobserved states, where Λ = (λ1, ..., λN )′ is the vector of loading coefficients

and IN is an identity matrix of order N . Moreover, B = diag(ρ, φ1, ..., φN ) is a diagonal state

transition matrix and Qt = diag(vt, ω1t, ..., ωNt) is a diagonal covariance matrix whose elements

are defined in (7) and (8). In the subsequent sections we describe the estimation approach of

the state space model in (9)-(10) and the out-of-sample analysis designed for this study.

3 Data and estimation approach

The dataset comprises quarterly data on the Consumer Price Index (CPI) denoted Pit for

OECD economies in the G7 (Canada, France, Germany, Italy, Japan, United Kingdom and

United States). The full sample period runs from Q1-1960 to Q4-2009 and the data have been

obtained from the OECD Statistics Portal.2 We employ year-on-year (yoy) inflation rates, i.e.

πit = 100× (lnPit − lnPit−4) to avoid seasonalities (Ciccarelli and Mojon, 2010).

Model (9)-(10) is estimated by means of Quasi Maximum Likelihood. Note, that if ξt =

(εt, u1,t, ..., uN,t)′ were observed, the model (9)-(10) would be conditionally Gaussian and the

Kalman filter would be the optimal filter in the sense that it would yield minimum mean square

estimates of the states St = (gt, f1,t, ..., fN,t)′. However, the disturbances ξt are unobserved and

2See http://www.oecd.org/statsportal for further details.
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equations (7)-(8) cannot be computed. Harvey et al. (1992) propose to substitute εt and uit in

(7) and (8) by their conditional expectations, i.e.

vt = α0 + α1E
[
ε2t−1|Πt−1

]
+ α2vt−1 + α3E [εt−1|Πt−1] , (11)

ωit = βi0 + βi1E
[
u2
it−1|Πt−1

]
+ βi2ωit−1 + βi3E [uit−1|Πt−1] . (12)

In this approach, the state vector is augmented with the disturbances ξt such that the

Kalman filter recursions can be used to compute the expectations in (11) and (12). The aug-

mented measurement and state transition equations are then given by

Πt = A∗S∗t = [A, 0N,N+1]S∗t ,

S∗t =

 St

ξt

 =

 B 0N+1,N+1

0N+1,N+1 0N+1,N+1


 St−1

ξt−1

+

 IN+1

IN+1

 ξt. (13)

Although the conditional distribution of ξt given ξt−1 is assumed to be normal with mean

zero and variance Qt, the distribution of ξt conditional on past observations is unknown, as

knowledge of past observations does not imply knowledge of past disturbances. Harvey et al.

(1992) propose to treat the augmented state space (13) as if it were conditionally Gaussian and

to use the Kalman filter to obtain an approximate likelihood function based on the prediction

errors decomposition:

logL(Γ|Π) = −NT
2

log(2π)− 1
2

T∑
t=1

log(|Σt|)−
1
2

T∑
t=1

ε′tΣ
−1
t εt, (14)

where Π = (Π1, ...,ΠT )′ are the observations, εt are the innovations and Σt their corresponding

variances. The Quasi-Maximum Likelihood estimates of Γ are obtained by maximizing the

Gaussian log-likelihood in (14) (see, for instance, Kim and Nelson (1999) for further details).

The vector of parameters to be estimated in the full version of model (9)-(10) is given by:

Γ = (1, ..., λ∗N , µ, ρ, φ1, ..., φN , α0, α1, α2, α3, β01, ..., β0N , β11, ..., β1N , β21, ..., β2N , β31, ..., β3N )′,(15)

where we normalize the loading coefficients with respect to the loading coefficient of the US,
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i.e. λ∗i = λi/λ1 for i = 2, ..., N . As introduced previously, our model is rich in the sense that it

allows us to analyze various nested specifications. In our in-sample and out-of-sample analysis

we study other submodels within the fully parameterized model. The different specifications

analyzed are denoted M1 to M6 and are displayed in Table 1.

We used Principal Component Analysis (PCA) to find initial values for the loading matrix Λ,

and an Ordinary Least Squares (OLS) regression of the first principal component on its lagged

values to obtain an initial value for the autoregressive parameter ρ of the global component.

Given the PCA estimate of Λ and gt, we computed an estimate for fit = πit − λigt, i =

1, ..., N , and subsequently estimated the autoregressive (AR) coefficients φi by means of an

OLS regression of the estimate for fit on fit−1. These initial values are used as starting point

in the BFGS (Broyden, 1970) numerical optimization routine, used to maximize (14) with a

homoskedastic version of our model (9)-(10), i.e. with Qt = Q. This restricted version of

the model (denoted M1) is conditionally Gaussian, and the Kalman filter is the optimal filter

for its estimation. The ML estimates of the subset parameter vector Γ(1) obtained from the

estimation of M1 are used to initialize the estimation of two larger models: M2 which contains

GARCH effects only in the country-specific components fit and M3 which contains GARCH

effects only in the global component gt. Initial values for GARCH parameters are obtained

by estimating GARCH processes with estimates of εt and uit computed from M1. The QML

parameter estimates Γ(2) and Γ(3) obtained from M2 and M3, respectively, are subsequently used

to initialize the estimation of the other model specifications considered: M4 (with GARCH(1,1)

in gt and fit), M5 (with IGARCH(1,1) in gt and fit) and M6 (with QIGARCH(1,1) in gt and

fit).

4 Out-of-sample analysis

The proposed model is also tested out-of-sample to shed light on its capabilities for forecasting

inflation. The out-of-sample period chosen for backtesting the model runs from Q1-1985 to Q4-

2009 which covers the second half of our sample.3 In what follows we describe the forecasting
3Other samples yielded qualitatively similar results and can be provided upon request.
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methodology employed for single and combined forecasts and the forecast evaluation.

4.1 Single forecasts

Let τ denote the forecast origin. The out-of-sample forecasting analysis consists of estimating

the parameter vector Γ(l) of model l up to time τ = R and using observations τ = R,R+1, ..., T−

h to obtain forecasts π̂iτ+h|τ and ∆π̂iτ+h|τ recursively for horizons h = 1, 4, 8, i.e. quarterly,

annually and bi-annually yoy-inflation, based on the Kalman filter estimates ĝτ and f̂iτ . Due to

the computationally intensive estimation procedure, we do not re-estimate parameters at each

τ in order to save on computational time.

Forecasts of inflation π̂iτ+h|τ for each i, τ and h are obtained as

π̂iτ+h|τ = λ̂∗i ĝτ+h|τ + f̂iτ+h|τ , (16)

ĝτ+h|τ = µ̂+ ρ̂hĝτ , (17)

f̂iτ+h|τ = φ̂hi f̂iτ . (18)

We obtain forecasts of inflation changes ∆π̂iτ+h|τ for each i, τ and h as

∆π̂iτ+h|τ = λ̂∗i∆ĝτ+h|τ + ∆f̂iτ+h|τ , (19)

∆ĝτ+h|τ = (ρ̂− 1)ρ̂h−1ĝτ , (20)

∆f̂iτ+h|τ = (φ̂i − 1)φ̂h−1
i f̂iτ . (21)

From an economic perspective, forecasts of inflation π̂iτ+h|τ might be more interesting than

forecast of inflation changes ∆π̂iτ+h|τ as they have a straight forward interpretation. However,

recent studies have suggested that accurate forecasts of the direction of inflation changes can

shed light (ex-ante) onto the type of monetary policy needed (i.e. tight versus loose) which

motivates us to also analyze them here (Sinclair et al., 2006).
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4.2 Combined forecasts

An important result from the methodological literature on forecasting is that a linear combi-

nation of two or more forecasts may yield more accurate predictions than using only a single

forecast (Granger, 1989; Newbold and Harvey, 2002; Aiolfi and Timmermann, 2006). In par-

ticular, there is recent evidence that combining forecast of nested models can significantly

improve forecasting precision upon forecasts obtained from single model specifications (Clark

and McCracken, 2009). Therefore, our proposed inflation model provides a good platform to

test out-of-sample complementarities between alternative nested models (Table 1) via forecast

combinations.

Combinations of inflation forecasts obtained from various models for each i = 1, ..., N are

given by:

ŷiτ+h|τ = ŵ′iτ+h|τ η̂iτ+h|τ , (22)

where ŷiτ+h|τ is the combined forecast of inflation (inflation change), η̂iτ+h|τ is a vector that

collects forecasts of inflation (inflation change) of model l and ŵiτ+h|τ is a vector that collects

the weights attached to each model l.

The weights ŵl,iτ+h|τ , l = 1, ..., 5, are computed based on alternative criteria that measure

the out-of-sample performance of each inflation (inflation change) forecast l. Note, however,

that since a forecaster would only have information available up to the forecast origin τ , the

sub-sample for forecast selection and computation of weights must contain data on or before

that period. Thus, we start by setting equal weights to all forecasts until the weighting schemes

could be based on the evaluation of realized forecast errors. This procedure guarantees that we

use only information available up to a particular period τ to set weights of forecasts for period

τ + h. The following 5 alternative combination strategies c = {1, 2, ..., 5} are considered:

1. Simple average (AFC): Various studies have demonstrated that simple averaging of a

multitude of forecasts works well in relation to more sophisticated weighting schemes

(Newbold and Harvey, 2002; Clark and McCracken, 2009). Therefore, the first scheme

that we use is of averaging all the forecasts obtained from the different models considered.
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2. Thick-modeling approach with OLS weights (TFC): A study by Granger and Jeon (2004)

proposes the so-called thick modeling approach (TMA) which consists of selecting the

z-percent of the best forecasting models in the sub-sample period for model evaluation,

according to the root mean square error (RMSE) criterion. We use the selection process of

Granger and Jeon and subsequently compute weights by means of OLS regressions along

with the constraint that the weights are all positive and sum up to one. The z-percent of

top forecasts selected is set to 2 (i.e. about z=35%).

3. Rank-weighted combinations (RFC): The RFC scheme, suggested by Aiolfi and Timmer-

mann (2006), consists of first computing the RMSE of all models in the sub-sample period

for evaluation. Defining RANKh,iτ (l) as the rank of the l-th model based on its historical

RMSE performance up to time τ for horizon h, the weight for the l-th forecast is then

calculated as: ŵl,iτ+h|τ = RANKh,iτ (l)−1/
∑

lRANKh,iτ (l)−1.

4. RMSE-weighted combinations (MFC): The MFC weighting scheme is similar to RFC and

consists of computing the RMSE of all selected models l and setting the weight of the l-th

model as ŵl,iτ+h|τ = RMSEh,iτ (l)−1/
∑

lRMSEh,iτ (l)−1.

5. Frequency combinations (FFC): The FFC scheme consists of assigning to each l-th forecast,

a weight equal to a model’s empirical frequency of minimizing the squared forecast error

over realized past forecasts.

4.3 Forecast evaluation

In order to evaluate forecasts of inflation we employ mean squared forecast errors (MSE) and

mean absolute forecast errors (MAE). MSE and MAE of a particular model are given in per-

centage of the MSE and MAE of either an autoregressive model of order one (AR) or a random

walk model (RW). More precisely, let τ̃ = 1, ..., T denote an out-of-sample forecast observation

with T = T −R−h. Let ‘•’ and ‘0’ indicate a particular competing model and the benchmark,

respectively. Forecast errors of model ‘•’ for country i are computed as

êiτ̃ (•) = πiτ̃ − π̂iτ̃ (•). (23)
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The MSE and MAE of model ‘•’ are:

d̄i(•) = T −1
∑
τ̃

diτ̃ (•), (24)

with diτ̃ (•) = êiτ̃ (•)2 for MSE or diτ̃ (•) = |êiτ̃ (•)| for MAE. The average performance of a

competing model specification is given in relation to d̄i(0), obtaining relative MSEs or MAEs:

dri(•) =
d̄i(•)
d̄i(0)

, (25)

where d̄i(0) is defined as in (24). Thus, dri(•) values below one indicate a superior performance

of a particular model ‘•’ against the benchmark ‘0’ in terms of MSE or MAE. Note that (25)

computed with diτ̃ (•) = êiτ̃ (•)2 and diτ̃ (0) = êiτ̃ (0)2 in (24) is related to the so-called out-of-

sample R2 as R2
OS,i = 1− dri(•).

In order to analyze whether model ‘0’ has a statistically equal predictive accuracy to model

‘•’, we employ the modified Diebold Mariano (DM) test of Harvey et al. (1997). We address the

issue of forecast complementarities between ‘0’ and ‘•’ by means of the forecast encompassing

test proposed by Harvey et al. (1998). Lastly, we analyze the out-of-sample performance of our

model for forecasting the direction of change of inflation ∆πit+h by means of the directional-

accuracy test of Pesaran and Timmermann (1995).

5 Results

In this section we discuss the main results of our study. We consider first the in-sample results

(Tables 2 to 7) and subsequently the out-of-sample results (Tables 8 to 13).

5.1 In-sample results

Tables 6 and 7 display the parameter estimation results for the full sample period Q1-1960 to

Q4-2009. The first specification (M1) considers the multivariate inflation model with an AR

world component and homoskedastic shocks, i.e. |ρ| < 1, αk = 0 and βik = 0 for k = 1, 2
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and all i. Note, then, that this model is a variant of the global inflation model proposed by

CM (estimated in one step). We find for this version of the model that the normalized loading

coefficients λ̂∗i and autoregressive coefficients φ̂i are all statistically different from zero at the 5%

level. The estimate ρ̂ in M1 is very close to one, indicating that the global inflation component

possibly follows a random walk process. This result suggests that the inflation rates of the G7

might be cointegrated with the global inflation component since the estimated autoregressive

parameters φ̂i are all less than one (Table 3). The case of ρ = 1 is supported by unit root tests

and cointegration tests presented in Tables 2 and 3. In fact, imposing ρ = 1 yields a higher

log-likelihood value for M2-M6 than for M1 (Table 5).4 Thus, models M2 to M6 assume a

cointegrated model of G7 inflation, that is we set ρ = 1.

Model 2 (M2) assumes that αk = 0 for k = 1, 2, i.e. GARCH effects only in the country-

specific components fit. For the latter model, we find that the loading coefficients λ̂∗i and

autoregressive coefficients φ̂i are statistically different from zero as in the case of M1. However,

(G)ARCH parameters of the country-specific components fit are statistically insignificant in

most countries. Moreover, in several countries the restriction β1,i + β2,i < 1 is almost binding

suggesting that conditional volatility could be better approximated by an Integrated GARCH

(IGARCH) process. Interestingly, the latter results corroborates the model of SW who specify

conditional variances by means of integrated stochastic volatility processes.

Model 3 (M3) considers a heteroskedastic global inflation component gt but homoskedastic

country-specific components fit, i.e. αk 6= 0 and βik = 0 for k = 1, 2 and all i. The latter model

yields parameter estimates λ̂∗i and φ̂i that are statistically different from zero in all countries

at conventional significance levels. Interestingly, M3 clearly shows that the world component

gt exhibits time-varying volatility vt as all GARCH parameters are statistically different from

zero (Table 7).

Model 4 (M4) assumes GARCH specifications for the global gt and the country-specific fit

components, i.e. αk 6= 0 and βik 6= 0 for k = 1, 2 and all i. However, as in the case of M2,

(G)ARCH parameter estimates of the country-specific shocks are not statistically different from

zero at the 5% level in most countries and the restrictions on these parameters are also almost
4A higher log likelihood is also obtained for the homoskedastic case with ρ = 1. Results can be provided upon

request.
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binding in several countries.

Given the results on M2 and M4, we have imposed the restrictions α2 = 1 − α1 and

βi2 = 1 − βi1 throughout in Models 5 (M5) and 6 (M6) which specifies conditional variances

as (Q)IGARCH processes. As expected, the parameters of the integrated conditional variances

in M5 and M6 are found to be statistically different from zero in most countries and for the

world component. In fact, the model incorporating IGARCH and asymmetric variance effects

(M6) yields the highest log-likelihood value out of all models considered (Table 5). Moreover,

M6 displays evidence of asymmetry in volatility at the 5% level in most countries which sug-

gests that high (low) inflation can generate high (low) inflation uncertainty. The relationship

between inflation and inflation volatility seems to be positive in all countries except for Canada.

Interestingly, the pass-through of inflation to inflation volatility is highest in France, Canada

and Japan which are also the three countries with the fastest speed of adjustment ϕi = φi − 1

according to M6.

Figure 1 displays the filtered estimates of the country specific components for the G7

economies obtained from M6 which is the full model. To save on space, we only present the

figures for M6 although similar plots are also obtained for other versions of the model and can

be provided upon request. Similar to CM, our global inflation estimate (ĝt) suggests a highly

significant international co-movement of inflation for the G7. The figure also shows the mean

reverting features of the country-specific error correction terms (f̂it = πit− λ̂∗i ĝt) suggesting that

global inflation is ‘attractive’ as proposed by CM. Visually, mean reversion seems to be fastest

(slowest) for France and Canada (USA and Italy) which is in line with their fast (slow) speed of

adjustment ϕi. Thus, it appears that France and Canada (USA and Italy) display a relatively

low (high) level of price ‘stickiness’ according to the data with M6 as underlying model.

Table 4 shows the results of a variance decomposition of M1 (the stationary case). We find

that the global inflation component explains on average more than 50% of national inflation rate

fluctuations, while a similar analysis for international business cycles shows that a global busi-

ness cycle component accounts on average for only 30% of the variance of industrial production

growth in OECD countries (Kose et al., 2008).

Figure 2 displays the conditional variance estimates for the G7 obtained from M6. Similar
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plots are also obtained for other versions of the model. Note that the volatility of the global

component captures the effect of the ‘Great Moderation’ but also shows a relative increase in

‘world’ inflation volatility after the start of the ‘Great Recession’. Interestingly, the effect of the

‘Great Recession’ in US national inflation volatility is affected not only via an increase in the

volatility of the global component, but also via the increase in the volatility of its country-specific

component.

Lastly, Figure 3 shows time-varying correlations obtained from our multivariate inflation

model for particular pairs of countries. Note that in all cases shown, the correlation of inflation

rates has increased in comparison to previous periods since the start of the ‘Great Recession’.

In fact, in some cases, the correlation level has come back to pre-‘Great Moderation’ levels.

Summing up, our proposed multivariate inflation model seems to describe the mean and

variance dynamics of inflation in the G7. However, some specifications seem to fit the data

better than others in-sample. In the next section we explore the out-of-sample implications of

the alternative specifications analyzed and their complementarities.

5.2 Out-of-sample results

In this section we discuss the out-of-sample performance of the various model specifications

considered and of combined forecasts, respectively. Tables 8 to 10 display the forecasting results

of the single model specifications. Tables 12 to 13 display the results on forecast combinations.

5.2.1 Single models

M1 which assumes homoskedastic (autoregressive) global and country-specific components,

yields relative MSEs (with RW as benchmark) which are below one for all countries except

for France. Forecasts of M1 encompass information of the RW forecasts according to the HLN

statistic in all countries except for France (Table 10). The latter result suggests that combining

forecasts of a RW and M1 for France would significantly improve inflation forecasts obtained

exclusively from M1 for this particular country. M1 also yields forecasts of inflation changes

that can accurately predict the direction of inflation change with a 95% confidence level in

Germany (h = 1, 4), Italy (h = 8) and in the UK (h = 4, 8) (Table 10).
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Turning to M2, which assumes a random walk global component and GARCH variances

in the country-specific components, we find that the MSEs results improve upon M1 for most

countries considered and at most forecasting horizons (Table 8). As for M1, we also find that

only in the case of France it would be possible to improve inflation forecasts at certain horizons

by means of a linear combination of forecasts obtained from M2 and RW according to the HLN

statistic (Table 10). Results on directional accuracy for M2 remain similar to those of M1 in

Germany and the UK.

Accounting for conditional heteroskedasticity in the global component only (M3) yields

somewhat higher relative MSEs in relation to M2 in most countries (Table 8). M3 forecast

encompasses the RW benchmark in most cases except of Japan at h = 1, 4. Results on directional

accuracy for M3 show that the direction of inflation changes can be accurately predicted with

this specification in the USA (h = 4), Germany (h = 4) and Italy (h = 4). The model

with GARCH specifications in all shocks (M4) yields lower relative MSEs than M1 and M3

(Table 8). M4 forecast encompasses the RW model in most countries except for France. Results

on directional accuracy for M4 remain qualitatively similar to M1 and M2 (Table 10).

We find that M5 which restricts shocks to have IGARCH variances yields a qualitatively

similar out-of-sample performance to M4 in terms of relative MSEs. However, restricting the

model to have IGARCH variances results in better forecasts than M1-M3 in terms of relative

MSEs (Table 8). Results on forecast encompassing and directional accuracy remain similar to

all other models for M5. Lastly, M6 which accounts for asymmetric effects in the variance of the

shocks usually yields the best performance in terms of MSEs in relation to other models at most

forecasting horizons. The out-of-sample performance of the alternative model specifications

seems to be consistent with the in-sample fit of each model as given by the likelihood values in

Table 5.

The previous forecasting results for inflation are qualitatively similar when comparing the

performance across models by means of MAEs (Table 8 and Table 9). However, relative MAEs

are usually larger than MSEs when comparing both measures. Moreover, it is worth noting

that MSEs and MAEs relative to AR increase in relation to MSEs and MAEs relative to RW.

This suggests that the AR benchmark is more difficult to beat than the RW benchmark which
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corroborates previous studies on inflation forecasting (Ciccarelli and Mojon, 2010).

Summing up, we find that the multivariate inflation specification for the G7 performs well

out-of-sample in relation to the standard benchmarks of the literature. This can be appreciated

visually at the aggregate level in Figures 4 and 5 which display (by means of boxplots) the

cross-section of relative MSEs for selected model specifications. In particular, we find that the

model with a common non-stationary component and QIGARCH shocks (M6) leads to better

forecasts than other nested specifications considered.

5.2.2 Combined forecasts

Tables 12 to 13 display the results of the forecast combination exercise. As is usually the case

in the forecasting literature, simple averaging of the forecasts (AFC) yields good results when

compared against more sophisticated methods (e.g. TFC, MFC, FFC). We find that combining

forecasts improve upon forecasts of several single models at various forecasting horizons. For

instance, in the USA, simple averaging of the forecasts (AFC) and the forecast combination

based on rank weights (RFC) improves upon M1 and M3 in terms of relative MSEs and MAEs.

Similarly, relative MSEs and MAEs of models M1 and M4 for Germany are improved by most

forecast combination strategies. In the case of France, where relative MSEs and MAEs are found

greater than one in all model specifications, TFC and FFC usually improve relative MSEs and

MAEs of most single models (although these quantities are still greater than one). The overall

benefits of combining forecast can be appreciated in Figures 4 and 5 which show that relative

MSEs remain similar to the ‘best’ model specifications but improve upon the ‘worst’ model

specifications. Indeed, in several countries there is an increase in the number of rejections of

the DM test in relation to single models.

The results on the HLN and PT test remain, however, qualitatively similar to those of single

models. As in the case of single models, MSEs and MAEs relative to the RW benchmark are

somewhat lower than those relative to the AR model, suggesting again that the AR model is

harder to beat.
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6 Conclusion

We contribute to the empirical inflation literature by proposing and estimating a multivariate

model of inflation with conditionally heteroskedastic common and country-specific components.

Our empirical specification is rich in the sense that it incorporates all the determinants of

inflation that reconcile the empirical evidence set forth by SW, BR, CPS, CM and CHKSW.

The model is estimated in one-step by means of QML and we analyze various specifications of

the full model both in-sample and out-of-sample. In general, we find that the proposed model

(with some parameter restrictions) fits the data quite well and has good forecasting performance

relative to the RW, AR and a variant of the benchmark proposed by CM.

We find that the estimated global inflation trend can explain on average more than 50% of

the variability of national inflation in the G7. The volatility of the global inflation trend captures

the international effects of the ‘Great Moderation’ and of the ‘Great Recession’. We also find

that there is an increase in correlation of inflation for certain country pairs since the start of

the ‘Great Recession’. Moreover, there is evidence of asymmetry in inflation volatility which

is consistent with the idea from Friedman (1977) that higher inflation levels lead to greater

uncertainty about future inflation.

An interesting extension to this model would be to allow for stochastic volatility in the

shocks. Furthermore, it would be interesting to investigate the dynamics of world volatility of

various macro variables. We leave these issues for future research.
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A Time varying correlations

Time varying correlations of the model based on the parameter estimates are computed as:

Ĉort−1(πit, πjt) =
Ĉovt−1[πit, πjt]√

V̂art−1[πit]
√

V̂art−1[πjt]
,

with

V̂art−1[πit] = λ̂2
i ρ̂

2P ggt−1 + λ̂2
i v̂t + 2λ̂iφ̂iρ̂P

gfi
t−1 + φ̂2

iP
fifi
t−1 + ω̂it, (26)

Ĉovt−1[πit, πjt] = λ̂iλ̂j(ρ̂2P ggt−1 + v̂t) + λ̂iρ̂φ̂jP
gfj

t−1 + λ̂j ρ̂φ̂iP
gfi
t−1 + φ̂iφ̂jP

fifj

t−1 , (27)

where P ijt−1 is the period t− 1 covariance between the estimates of states i and j.
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US Canada France Germany Italy Japan UK

τADF -2.168 -1.498 -0.974 -2.122 -1.016 -1.885 -1.619

Table 2: Results from Augmented Dickey-Fuller test with 4 lags and a constant term. 10%
critical value of τADF is −2.569.

Null Hypothesis Jtrace Jmax

r = 0 169.255 53.311
crit 90% 120.367 43.295

crit 95% 125.619 46.230

crit 99% 135.982 52.307

r = 1 115.944 44.693
crit 90% 91.109 37.279

crit 95% 95.754 40.076

crit 99% 104.964 45.866

r = 2 71.2510 28.633
crit 90% 65.820 31.238

crit 95% 69.819 33.878

crit 99% 77.820 39.369

r = 3 42.618 18.140
crit 90% 44.493 25.124

crit 95% 47.855 27.586

crit 99% 54.682 32.717

Table 3: Results from cointegration tests.

28



Model US Canada France Germany Italy Japan UK

M1 78.78% 88.32% 95.36% 53.37% 90.47% 45.18% 79.17%

Table 4: Share of national inflation variance explained by the global inflation component

Model logL

M1 -1468.041
M2 -1266.156
M3 -1453.968
M4 -1236.072
M5 -1243.685
M6 -1214.944

Table 5: Likelihood value for each model
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Country Model λ̂∗i φ̂i β̂0i β̂1i β̂2i β̂3i

USA

M1 1.000 0.968 0.487 — — —
(0.028) (0.035)

M2 1.000 0.922 0.155 0.290 0.651 —
(0.055) (0.115) (0.373) (0.297)

M3 1.000 0.913 0.542 — — —
(0.032) (0.029)

M4 1.000 0.955 0.119 0.204 0.752 —
(0.050) (0.139) (0.342) (0.245)

M5 1.000 0.937 0.104 0.305 — —
(0.030) (0.032) (0.103)

M6 1.000 0.957 0.099 0.239 — 0.020
(0.023) (0.028) (0.085) (0.064)

CAN

M1 0.771 0.863 0.608 — — —
(0.094) (0.046) (0.035)

M2 0.969 0.850 0.515 0.279 0.711 —
(0.138) (0.081) (0.340) (0.460) (1.095)

M3 1.045 0.877 0.631 — — —
(0.075) (0.036) (0.030)

M4 0.904 0.857 0.526 0.218 0.710 —
(0.292) (0.125) (0.356) (0.586) (1.063)

M5 0.908 0.852 0.225 0.492 — —
(0.085) (0.047) (0.062) (0.161)

M6 0.875 0.920 0.297 0.599 — -0.180
(0.122) (0.046) (0.099) (0.308) (0.096)

FRA

M1 0.933 0.926 0.391 — — —
(0.116) (0.037) (0.030)

M2 1.119 0.931 0.133 0.450 0.440 —
(0.380) (0.223) (0.568) (0.989) (1.010)

M3 1.533 0.987 0.352 — — —
(0.128) (0.014) (0.040)

M4 1.019 0.797 0.159 0.840 0.150 —
(0.228) (0.266) (0.542) (1.811) (0.967)

M5 0.998 0.917 0.143 0.610 — —
(0.096) (0.052) (0.033) (0.192)

M6 1.152 0.668 0.124 0.784 — 0.219
(0.115) (0.090) (0.024) (0.150) (0.001)

GER

M1 0.525 0.946 0.423 — — —
(0.078) (0.024) (0.024)

M2 0.729 0.938 0.153 0.134 0.720 —
(0.392) (0.089) (0.145) (0.141) (0.196)

M3 0.740 0.966 0.439 — — —
(0.093) (0.023) (0.024)

M4 0.608 0.926 0.192 0.145 0.655 —
(0.267) (0.094) (0.107) (0.303) (0.319)

M5 0.644 0.916 0.109 0.272 — —
(0.076) (0.032) (0.039) (0.128)

M6 0.724 0.944 0.070 0.153 — 0.054
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(0.086) (0.021) (0.019) (0.038) (0.001)

ITA

M1 1.133 0.932 0.823 — — —
(0.184) (0.043) (0.049)

M2 0.735 0.974 0.086 0.350 0.640 —
(0.224) (0.044) (0.624) (1.000) (0.982)

M3 1.676 0.921 0.825 — — —
(0.135) (0.035) (0.045)

M4 0.769 0.984 0.085 0.380 0.610 —
(0.431) (0.030) (0.618) (1.004) (0.972)

M5 0.740 0.977 0.085 0.371 — —
(0.101) (0.013) (0.024) (0.076)

M6 0.820 0.983 0.084 0.339 — 0.098
(0.110) (0.010) (0.021) (0.065) (0.001)

JAP

M1 1.240 0.977 0.945 — — —
(0.214) (0.017) (0.052)

M2 0.813 0.936 0.257 0.279 0.671 —
(0.340) (0.062) (0.129) (0.167) (0.142)

M3 1.955 0.990 0.942 — — —
(0.275) (0.020) (0.053)

M4 0.795 0.927 0.240 0.306 0.659 —
(0.414) (0.096) (0.221) (0.199) (0.265)

M5 0.807 0.941 0.221 0.329 — —
(0.140) (0.030) (0.045) (0.061)

M6 0.926 0.923 0.228 0.258 — 0.231
(0.132) (0.020) (0.041) (0.050) (0.001)

GRB

M1 1.079 0.906 0.966 — — —
(0.152) (0.034) (0.052)

M2 0.925 0.908 0.128 0.280 0.710 —
(0.676) (0.191) (1.143) (0.998) (0.981)

M3 1.472 0.948 0.988 — — —
(0.159) (0.028) (0.050)

M4 0.862 0.929 0.117 0.260 0.730 —
(0.285) (0.070) (1.138) (0.999) (0.919)

M5 0.840 0.923 0.108 0.267 — —
(0.108) (0.034) (0.033) (0.060)

M6 0.960 0.928 0.094 0.248 — 0.093
(0.125) (0.031) (0.027) (0.048) (0.001)

Table 6: In-sample estimation results per country for the various model speci-

fications. For acronyms see Table 1.
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gt Model µ ρ α0 α1 α2 α3

FAC

M1 3.399 0.989 0.492 — — —
(2.544) (0.009) (0.055)

M2 — 1.000 0.415 — — —
(0.155)

M3 — 1.000 0.104 0.038 0.308 —
(0.047) (0.012) (0.156)

M4 — 1.000 0.133 0.820 0.170 —
(0.351) (1.168) (0.996)

M5 — 1.000 0.130 0.784 — —
(0.033) (0.187)

M6 — 1.000 0.137 0.887 — 0.086
(0.026) (0.108) (0.046)

Table 7: In-sample estimation results of the global inflation component for the various model
specifications. For acronyms see Table 1.
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h 1 4 8 1 4 8
Country Model MSE MAE

USA

M1 0.996 0.972 0.936 1.001 0.990 0.976
M2 0.981 0.898 0.848 1.019 0.984 0.942
M3 0.996 0.973 0.967 1.004 0.995 1.003
M4 0.981 0.896 0.836 1.011 0.977 0.930
M5 0.981 0.898 0.850 1.011 0.981 0.939
M6 0.982 0.898 0.905 1.027 1.001 0.970

CAN

M1 0.967 0.880 0.810 0.984 0.961 0.946
M2 0.952 0.849 0.801 0.982 0.950 0.940
M3 0.983 0.933 0.878 0.993 0.975 0.977
M4 0.944 0.816 0.804 0.985 0.938 0.933
M5 0.949 0.827 0.805 0.986 0.945 0.941
M6 0.987 0.952 0.900 0.994 0.981 0.972

FRA

M1 1.101 1.148 1.702 1.053 1.147 1.295
M2 1.181 1.190 1.571 1.097 1.155 1.233
M3 1.000 1.001 1.048 1.002 1.011 1.038
M4 1.188 1.162 1.596 1.105 1.157 1.245
M5 1.152 1.187 1.630 1.087 1.179 1.255
M6 1.114 1.053 1.228 1.050 1.085 1.108

GER

M1 0.967 0.843 0.683 0.976 0.898 0.827
M2 0.971 0.873 0.739 0.980 0.920 0.862
M3 0.960 0.804 0.635 0.972 0.869 0.795
M4 0.963 0.832 0.670 0.971 0.889 0.814
M5 0.961 0.820 0.641 0.969 0.876 0.796
M6 0.971 0.836 0.661 0.974 0.879 0.804

ITA

M1 0.922 0.892 0.717 0.964 0.936 0.909
M2 0.943 0.903 0.823 0.971 0.950 0.923
M3 0.968 0.955 0.920 0.985 0.983 0.982
M4 0.928 0.880 0.799 0.967 0.941 0.923
M5 0.933 0.889 0.809 0.968 0.944 0.921
M6 0.946 0.907 0.834 0.972 0.951 0.925

JAP

M1 0.998 1.008 0.982 1.002 0.998 0.999
M2 0.985 0.992 0.917 1.000 1.004 0.988
M3 1.041 1.189 1.404 1.034 1.147 1.265
M4 0.973 0.959 0.857 0.998 1.031 1.003
M5 0.976 0.976 0.891 0.999 1.043 1.027
M6 0.965 0.943 0.815 0.994 1.009 0.980

GRB

M1 0.945 0.803 0.685 0.977 0.925 0.859
M2 0.920 0.766 0.628 0.968 0.906 0.820
M3 0.985 0.952 0.925 1.003 1.015 1.026
M4 0.926 0.769 0.629 0.967 0.908 0.822
M5 0.961 0.882 0.795 0.987 0.956 0.912
M6 0.993 0.871 0.725 1.000 0.971 0.838

Table 8: Results on forecasting accuracy of inflation models with random walk benchmark. The
table shows MSE and MAE for the various model specifications relative to MSE and MAE of
a random walk model for horizons h = 1, 4, 8. Entries in bold denote statistical significance at
the 10% level according to the Diebold Mariano test. For acronyms see Table 1.
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h 1 4 8 1 4 8
Country Model MSE MAE

USA

M1 1.001 0.992 0.966 1.003 0.992 0.988
M2 0.986 0.916 0.875 1.021 0.986 0.954
M3 1.002 0.993 0.998 1.006 0.997 1.015
M4 0.987 0.915 0.863 1.013 0.979 0.942
M5 0.987 0.917 0.877 1.013 0.983 0.951
M6 0.987 0.917 0.934 1.029 1.003 0.982

CAN

M1 0.972 0.898 0.852 0.987 0.968 0.958
M2 0.957 0.867 0.842 0.984 0.957 0.952
M3 0.988 0.953 0.923 0.996 0.982 0.990
M4 0.949 0.833 0.845 0.988 0.945 0.945
M5 0.954 0.845 0.846 0.989 0.952 0.953
M6 0.992 0.972 0.946 0.997 0.988 0.984

FRA

M1 1.108 1.169 1.770 1.056 1.159 1.320
M2 1.189 1.212 1.634 1.100 1.167 1.257
M3 1.007 1.019 1.089 1.004 1.021 1.058
M4 1.195 1.183 1.659 1.108 1.169 1.269
M5 1.160 1.209 1.694 1.089 1.192 1.280
M6 1.121 1.072 1.277 1.052 1.096 1.129

GER

M1 0.974 0.866 0.714 0.980 0.911 0.841
M2 0.978 0.897 0.773 0.985 0.933 0.876
M3 0.967 0.827 0.664 0.977 0.882 0.808
M4 0.970 0.855 0.701 0.976 0.902 0.827
M5 0.968 0.843 0.671 0.974 0.889 0.809
M6 0.978 0.859 0.691 0.978 0.891 0.817

ITA

M1 0.941 0.927 0.773 0.975 0.954 0.943
M2 0.962 0.938 0.887 0.982 0.968 0.957
M3 0.987 0.992 0.991 0.996 1.002 1.018
M4 0.946 0.914 0.861 0.978 0.959 0.957
M5 0.952 0.923 0.872 0.979 0.962 0.955
M6 0.965 0.942 0.899 0.984 0.970 0.959

JAP

M1 1.016 1.086 1.122 1.012 1.034 1.078
M2 1.003 1.068 1.048 1.010 1.040 1.066
M3 1.059 1.281 1.604 1.044 1.189 1.365
M4 0.990 1.034 0.979 1.007 1.068 1.082
M5 0.994 1.052 1.018 1.009 1.081 1.108
M6 0.983 1.016 0.931 1.003 1.046 1.057

GRB

M1 0.959 0.837 0.737 0.977 0.926 0.860
M2 0.933 0.798 0.676 0.968 0.907 0.820
M3 0.999 0.993 0.995 1.003 1.016 1.027
M4 0.939 0.802 0.677 0.967 0.909 0.822
M5 0.975 0.920 0.855 0.987 0.957 0.912
M6 1.008 0.908 0.780 1.000 0.972 0.838

Table 9: Results on forecasting accuracy of inflation models with autoregressive benchmark.
The table shows MSE and MAE for the various model specifications relative to MSE and MAE
of an autoregressive model of order one for horizons h = 1, 4, 8. Entries in bold denote statistical
significance at the 10% level according to the Diebold Mariano test. For acronyms see Table 1.
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h 1 4 8 1 4 8 1 4 8
Country Model HLNAR HLNRW PT

USA

M1 0.337 -0.374 -0.363 -0.653 -1.857 -1.673 0.166 1.587 -0.187
M2 -0.065 -0.786 -0.193 -0.110 -0.734 0.017 -0.543 1.092 0.101
M3 0.545 -0.342 0.287 -0.561 -1.686 -0.802 -0.189 2.407 0.346
M4 -0.234 -1.101 -0.773 -0.286 -1.020 -0.524 0.078 1.092 -0.246
M5 -0.265 -1.071 -0.680 -0.309 -0.982 -0.395 0.078 1.092 -0.246
M6 0.217 -0.330 1.028 0.204 -0.282 1.176 -0.286 0.876 0.937

CAN

M1 -1.091 -1.258 -0.532 -1.010 -1.192 -0.482 0.955 -0.046 -0.743
M2 -0.959 -0.989 -0.173 -0.891 -0.955 -0.168 1.191 0.430 -1.349
M3 -1.273 -1.399 -0.821 -1.275 -1.366 -0.826 0.502 0.556 -0.655
M4 -0.361 -0.730 0.308 -0.332 -0.701 0.261 0.704 0.032 -1.021
M5 -0.467 -0.784 0.180 -0.438 -0.758 0.145 0.704 0.032 -1.021
M6 -1.545 -1.539 -1.141 -1.334 -1.462 -1.032 0.618 -0.458 -0.446

FRA

M1 2.617 2.121 1.817 2.580 1.987 1.786 -0.545 0.776 0.773
M2 2.797 1.984 1.614 2.777 1.895 1.573 -0.823 0.662 -0.250
M3 1.091 1.111 1.239 0.220 0.233 0.944 1.258 -0.427 -1.128
M4 2.896 1.740 1.647 2.879 1.639 1.613 0.119 1.078 -0.269
M5 3.235 1.971 1.689 3.264 1.867 1.648 -1.145 0.854 -0.533
M6 2.920 1.985 1.951 2.937 1.726 1.917 0.337 1.299 -0.539

GER

M1 -0.330 -1.928 -2.094 -0.263 -1.587 -1.730 1.931 2.690 1.096
M2 -0.655 -2.167 -2.124 -0.537 -1.744 -1.707 1.931 2.690 1.096
M3 -0.123 -2.271 -2.322 -0.065 -1.786 -1.808 2.606 2.630 0.631
M4 -0.280 -1.786 -1.961 -0.193 -1.430 -1.519 1.681 2.690 1.096
M5 -0.203 -1.790 -2.063 -0.125 -1.447 -1.668 1.379 2.354 0.806
M6 0.215 -0.972 -1.557 0.257 -0.735 -1.100 1.379 2.354 0.806

ITA

M1 -1.007 -0.586 -0.921 -1.161 -0.979 -1.200 1.175 0.106 2.051
M2 -1.038 -1.046 -0.716 -0.990 -1.029 -0.626 0.484 0.385 0.394
M3 -0.726 -0.217 0.098 -1.149 -1.124 -0.974 1.280 1.892 1.693
M4 -0.831 -0.811 -0.286 -0.790 -0.783 -0.198 0.484 0.385 0.394
M5 -0.941 -0.914 -0.471 -0.896 -0.889 -0.385 0.484 0.385 0.394
M6 -0.976 -0.998 -0.593 -0.949 -0.993 -0.533 0.484 0.385 0.394

JAP

M1 1.198 1.553 1.108 0.137 0.527 0.249 -0.021 0.010 0.011
M2 0.831 1.379 1.248 0.039 0.599 0.452 0.984 1.050 0.023
M3 2.465 2.705 2.672 2.204 2.568 2.819 -0.021 0.010 0.011
M4 1.184 1.579 1.838 0.764 1.009 1.071 1.643 0.876 0.029
M5 1.286 1.741 2.003 0.868 1.166 1.228 1.643 0.876 0.029
M6 0.747 1.239 1.281 0.259 0.627 0.521 2.181 1.652 1.012

GRB

M1 -0.326 -1.164 -0.997 -0.587 -1.206 -1.047 1.049 1.993 2.319
M2 -0.500 -0.998 -1.170 -0.388 -0.768 -0.937 1.796 0.704 3.030
M3 0.808 0.912 0.987 -0.014 -0.127 -0.004 -0.771 -0.390 1.026
M4 -0.389 -1.079 -1.227 -0.319 -0.810 -1.006 2.352 1.265 2.289
M5 -1.425 -1.805 -1.701 -1.101 -1.131 -1.092 2.228 0.704 2.586
M6 0.973 0.636 0.391 1.005 0.721 0.614 1.249 0.023 1.847

Table 10: Results on forecast encompassing and directional accuracy of inflation models. The
table displays the results on the forecast encompassing test of Harvey et al. (1998) with respect
to the autoregressive (HLNAR) and random walk (HLNRW) benchmarks, and the directional-
accuracy test of Pesaran and Timmermann (1995) (PT). For acronyms see Table 1.
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h 1 4 8 1 4 8
Country Model MSE MAE

USA

AFC 0.983 0.913 0.857 1.005 0.980 0.940
TFC 1.004 0.911 0.872 1.013 0.989 0.956
RFC 0.986 0.920 0.886 1.002 0.983 0.957
MFC 0.983 0.913 0.860 1.005 0.980 0.942
FFC 0.985 0.930 0.893 1.002 0.985 0.960

CAN

AFC 0.960 0.866 0.812 0.983 0.952 0.944
TFC 0.953 0.873 0.881 0.985 0.941 0.955
RFC 0.958 0.863 0.812 0.984 0.946 0.940
MFC 0.960 0.868 0.817 0.983 0.952 0.945
FFC 0.962 0.895 0.895 0.985 0.960 0.975

FRA

AFC 1.108 1.101 1.409 1.055 1.117 1.172
TFC 1.064 1.072 1.200 1.026 1.093 1.106
RFC 1.105 1.104 1.377 1.054 1.113 1.166
MFC 1.105 1.098 1.379 1.054 1.114 1.161
FFC 1.063 1.052 1.231 1.031 1.074 1.103

GER

AFC 0.964 0.832 0.668 0.973 0.888 0.813
TFC 0.971 0.818 0.657 0.974 0.880 0.810
RFC 0.966 0.830 0.679 0.972 0.885 0.821
MFC 0.964 0.832 0.668 0.973 0.888 0.813
FFC 0.967 0.835 0.674 0.975 0.891 0.817

ITA

AFC 0.935 0.896 0.792 0.967 0.944 0.917
TFC 0.943 0.924 0.806 0.978 0.964 0.971
RFC 0.935 0.894 0.796 0.969 0.941 0.938
MFC 0.935 0.896 0.794 0.967 0.944 0.919
FFC 0.934 0.896 0.793 0.966 0.944 0.937

JAP

AFC 0.983 0.993 0.937 1.002 1.030 1.029
TFC 0.984 0.993 0.890 1.005 1.049 1.033
RFC 0.981 0.989 0.900 1.003 1.036 1.024
MFC 0.983 0.992 0.928 1.002 1.029 1.025
FFC 0.991 1.002 0.858 1.007 1.025 0.979

GRB

AFC 0.935 0.801 0.681 0.976 0.929 0.859
TFC 0.934 0.870 0.781 0.963 0.923 0.890
RFC 0.955 0.811 0.718 0.990 0.937 0.893
MFC 0.935 0.808 0.692 0.976 0.928 0.863
FFC 0.937 0.825 0.702 0.978 0.944 0.869

Table 11: Results on forecasting accuracy of combinations of inflation models with random
walk benchmark. The table shows MSE and MAE for the various forecast combination schemes
relative to MSE and MAE of a random walk model for horizons h = 1, 4, 8. Entries in bold
denote statistical significance at the 10% level according to the Diebold Mariano test. AFC =
simple average, TFC: thick modeling with OLS, RFC: rank weighted, MFC: RMSE weighted,
FFC: frequency weighted.
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h 1 4 8 1 4 8
Country Model MSE MAE

USA

AFC 0.988 0.932 0.885 1.007 0.982 0.952
TFC 1.010 0.930 0.900 1.015 0.990 0.968
RFC 0.991 0.939 0.915 1.004 0.984 0.969
MFC 0.988 0.932 0.888 1.007 0.982 0.954
FFC 0.990 0.950 0.922 1.005 0.987 0.973

CAN

AFC 0.965 0.885 0.853 0.986 0.960 0.956
TFC 0.958 0.891 0.926 0.988 0.948 0.967
RFC 0.963 0.881 0.853 0.987 0.953 0.952
MFC 0.965 0.886 0.859 0.986 0.959 0.957
FFC 0.967 0.914 0.941 0.988 0.967 0.988

FRA

AFC 1.115 1.121 1.465 1.058 1.129 1.195
TFC 1.071 1.092 1.248 1.029 1.104 1.128
RFC 1.113 1.124 1.432 1.057 1.125 1.189
MFC 1.112 1.117 1.434 1.057 1.126 1.184
FFC 1.070 1.071 1.280 1.034 1.085 1.125

GER

AFC 0.971 0.855 0.698 0.978 0.901 0.827
TFC 0.978 0.840 0.686 0.978 0.893 0.824
RFC 0.973 0.853 0.710 0.977 0.897 0.835
MFC 0.971 0.855 0.698 0.978 0.901 0.827
FFC 0.974 0.858 0.704 0.979 0.904 0.831

ITA

AFC 0.954 0.930 0.854 0.978 0.962 0.951
TFC 0.962 0.960 0.868 0.990 0.983 1.007
RFC 0.954 0.928 0.858 0.980 0.959 0.973
MFC 0.954 0.930 0.855 0.978 0.962 0.954
FFC 0.953 0.931 0.854 0.978 0.962 0.972

JAP

AFC 1.001 1.070 1.070 1.012 1.067 1.110
TFC 1.001 1.070 1.017 1.015 1.088 1.115
RFC 0.999 1.066 1.028 1.013 1.074 1.105
MFC 1.001 1.069 1.060 1.012 1.067 1.106
FFC 1.009 1.079 0.980 1.017 1.062 1.056

GRB

AFC 0.948 0.835 0.733 0.976 0.930 0.860
TFC 0.948 0.907 0.840 0.962 0.924 0.891
RFC 0.969 0.846 0.772 0.989 0.938 0.894
MFC 0.949 0.842 0.744 0.976 0.929 0.864
FFC 0.951 0.860 0.755 0.978 0.945 0.869

Table 12: Results on forecasting accuracy of combinations of inflation models with autoregressive
benchmark. The table shows MSE and MAE for the various forecast combination schemes
relative to MSE and MAE of a random walk model for horizons h = 1, 4, 8. Entries in bold
denote statistical significance at the 10% level according to the Diebold Mariano test. AFC =
simple average, TFC: thick modeling with OLS, RFC: rank weighted, MFC: RMSE weighted,
FFC: frequency weighted.
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h 1 4 8 1 4 8 1 4 8
Country Model HLNAR HLNRW PT

USA

AFC -0.438 -1.261 -1.266 -0.499 -1.165 -0.892 -0.219 1.382 -0.246
TFC 1.202 -0.746 -0.154 0.697 -0.715 0.041 -0.174 1.092 0.101
RFC -0.403 -1.164 -0.663 -0.562 -1.115 -0.514 0.085 1.092 0.101
MFC -0.435 -1.242 -1.183 -0.497 -1.151 -0.832 -0.219 1.382 -0.246
FFC -0.526 -1.280 -0.710 -0.635 -1.226 -0.527 -0.219 1.092 0.101

CAN

AFC -1.053 -1.206 -0.492 -1.033 -1.159 -0.466 0.930 -0.302 -0.894
TFC -1.176 -0.948 -0.008 -1.136 -0.989 -0.123 0.921 -0.242 -0.511
RFC -0.998 -1.225 -0.558 -0.942 -1.179 -0.520 0.930 -0.016 -1.223
MFC -1.065 -1.241 -0.493 -1.044 -1.191 -0.470 0.930 -0.302 -0.894
FFC -1.122 -1.272 -0.183 -1.052 -1.232 -0.314 0.930 -0.302 -0.874

FRA

AFC 2.888 1.860 1.671 2.872 1.696 1.623 -0.296 0.714 0.082
TFC 2.035 2.278 1.968 1.972 2.048 1.921 2.389 1.078 -0.116
RFC 2.720 1.682 1.682 2.694 1.530 1.635 -0.828 0.662 -0.231
MFC 2.859 1.904 1.680 2.844 1.692 1.621 -0.296 0.714 0.082
FFC 1.940 1.988 1.803 1.880 1.706 1.717 -0.555 0.452 0.414

GER

AFC -0.243 -1.882 -2.101 -0.168 -1.505 -1.638 1.596 2.037 1.074
TFC -0.243 -2.053 -2.027 -0.189 -1.619 -1.578 1.633 3.138 0.806
RFC -0.262 -1.778 -2.037 -0.191 -1.414 -1.568 1.633 2.354 0.806
MFC -0.243 -1.883 -2.100 -0.169 -1.506 -1.635 1.596 2.037 1.074
FFC -0.241 -1.912 -2.105 -0.173 -1.531 -1.635 1.633 2.037 1.074

ITA

AFC -1.317 -1.314 -1.189 -1.225 -1.253 -1.048 1.534 -0.068 0.179
TFC -0.493 -0.110 -0.341 -0.693 -0.437 -0.551 0.153 0.201 0.718
RFC -1.224 -1.145 -0.967 -1.175 -1.201 -0.959 0.093 0.034 1.113
MFC -1.314 -1.302 -1.161 -1.223 -1.245 -1.037 1.534 -0.395 0.179
FFC -1.259 -1.196 -0.907 -1.192 -1.256 -0.951 0.166 -0.101 -0.380

JAP

AFC 1.072 1.622 1.749 0.503 0.983 1.045 0.984 1.050 0.023
TFC 1.346 1.839 1.710 0.845 1.223 0.954 1.337 1.215 0.427
RFC 1.128 1.711 1.715 0.596 1.052 0.924 1.337 1.050 0.023
MFC 1.069 1.613 1.715 0.499 0.970 0.992 0.984 1.050 0.023
FFC 1.152 1.625 1.194 0.549 0.925 0.310 0.984 1.050 0.016

GRB

AFC -0.572 -1.105 -1.202 -0.471 -0.848 -0.982 2.352 0.588 2.670
TFC -1.505 -2.152 -0.946 -1.387 -1.374 -0.930 1.596 0.054 2.831
RFC -0.461 -1.265 -1.077 -0.463 -1.030 -0.944 1.227 1.968 2.269
MFC -0.599 -1.167 -1.219 -0.497 -0.885 -0.987 2.352 0.588 2.670
FFC -0.358 -0.869 -1.203 -0.279 -0.645 -0.953 1.763 0.390 2.453

Table 13: Results on forecast encompassing and directional accuracy of combinations of inflation
models. The table displays the results on the forecast encompassing test of Harvey et al. (1998)
with respect to the autoregressive (HLNAR) and random walk (HLNRW) benchmarks, and the
directional-accuracy test of Pesaran and Timmermann (1995) (PT). AFC = simple average,
TFC: thick modeling with OLS, RFC: rank weighted, MFC: RMSE weighted, FFC: frequency
weighted.
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