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The role of sequestration costs with a ceiling on atmospheric carbon

concentration✩

Wilfried Rickelsa,∗

aKiel Institute for the World Economy, Hindenburgufer 66, 24105, Kiel, Germany.

Abstract

I investigate the optimal role of carbon sequestration for mitigation in the presence of a ceiling on atmo-

spheric carbon concentration and consider aspects that have so far only been analyzed in the context of a

damage function to measure the consequences of climate change for society. I assume extraction costs to be

stock-dependent, replace the proportional decay description of the global carbon cycle by a two-box model,

investigate the differences resulting from linear versus convex sequestration costs, and consider oceanic in-

stead of geological carbon storage. Using a two-box model allows the non-renewable aspects of the global

carbon cycle to be accounted for and implies that carbon emissions have to decline at the ceiling due to the

ongoing saturation of the ocean with respect to anthropogenic carbon. Convex sequestration costs result in

a continuous use of such a technology and allow the ceiling to be reached later than without sequestration,

whereas linear sequestration costs result in a discontinuous use of such a technology and earlier reaching of

the ceiling. Consequently, taking into the account the uncertainties in defining an appropriate ceiling, the

policy recommendations with respect to carbon sequestration differ crucially according to the underlying

assumptions of sequestration costs. Furthermore, the ocean might be a storage option for captured carbon,

but even though its storage capacity is probably not scarce by itself, the ongoing saturation of the complete

carbon cycle has to be taken into account.
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1. Introduction

Unhindered climate change implies the risk of catastrophic damage to society. Quantifying of this risk is

complicated or even impossible due to our still limited understanding of the earth’s climate system and in

particular to the presence of tipping points in the climate system. Exceeding thresholds corresponding to

such tipping points might involve sharp and non-linear changes in climate dynamics, determined intrinsically

by the climate system and the feedback mechanisms involved. The location of such thresholds with respect

to atmospheric carbon concentration or temperature increase and the degree of irreversibility of crossing such

thresholds are still very uncertain (e.g., Lenton et al., 2008; Hoffmann and Rahmsdorf, 2009; Zickfeld et al.,

2010). With respect to these uncertainties, countries agreed to limit temperature increase to 2◦C as it has

again been confirmed at the recent global warming summit in Cancun (UNFCCC, 2010). This temperature

increase limit can be converted to a ceiling on atmospheric carbon concentration or a cumulative budget for

carbon emissions into the atmosphere (Meinshausen et al., 2009).

Actual greenhouse gas emission (GHG) trends and corresponding reduction announcements challenge

the credibility of this target. Furthermore, postponement of the necessary emission reductions implies

increasing mitigation costs.1 However, this target or the corresponding corresponding ceilings can still be

met if substantial emission cuts are made. To achieve these emissions cuts, in addition to improving energy

efficiency and making increased use of renewable energies, increased carbon sequestration, i.e. carbon capture

and storage, within energy consumption is expected to be necessary (IEA, 2010).

The optimal global role of carbon sequestration for mitigation in the presence of a ceiling on atmospheric

carbon concentration has so far mainly been analyzed quantitatively by numerous integrated assessment

models that consider various atmospheric stabilization levels (e.g., Gerlagh and van der Zwaan, 2006; Azar

et al., 2006; van der Zwaan and Gerlagh, 2009; Lemoine et al., 2011). The theoretical literature related to

carbon sequestration addresses the problem of increasing atmospheric carbon concentration primarily by

a damage function that measures the related consequences of climate change for society. As pointed out

above, it is obviously difficult to determine or agree on such a damage function. Theoretical implications of

imposing a ceiling on atmospheric carbon concentration while carbon emissions can be sequestered have been

studied first of all by Chakravorty et al. (2006) and Lafforgue et al. (2008). Chakravorty et al. investigate

the implication of a ceiling while energy consumption is provided by fossil fuels and a clean backstop

technology. Additionally, in their model it is possible to reduce fossil-fuel-related carbon emissions to the

atmosphere by costly abatement. However, there is little potential to abate carbon emissions once fossil

fuels have been combusted, implying that abatement implies sequestration but without any scarcity related

to potential storage sites. This has been further investigated by Lafforgue et al.. They consider geological

1The rather moderate emission reductions in the Copenhagen Accord until 2020 are estimated to cost an additional 1 trillion
USD of investment costs in the period from 2010 to 2035 compared to a more efficient mitigation path (IEA, 2010).
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carbon sequestration into a single reservoir or multiple reservoirs where carbon storing capacity is limited.

Chakravorty et al. and Lafforgue et al. find that sequestration only takes place in a discontinuous manner

once the ceiling has been reached and the availability of sequestration determines endogenously the period

when the ceiling is binding.2 Both papers assume extraction and sequestration units costs to be constant,

describe the global carbon cycle by proportional decay of atmospheric carbon, and consider geological carbon

storage. In this paper, I take a closer look at these assumptions and clarify the implications of four relevant

aspects related to the issue: the implications of stock-dependent extraction cost, (2) the implications of

modeling the global carbon cycle with a two-box model instead of a proportional decay, (3) the implications

of modeling sequestration costs convexly rather than linearly, and (4) the implications of oceanic instead of

geologic carbon storage.

Extraction costs are expected to be determined not only by the extraction rate, but also by the stock

of fossil resource left in the ground. Decreasing resource availability in existing deposits and exploitation

of economically less favorable deposits might be reflected by increasing marginal costs for a given rate of

extraction (Farzin, 1992). The recoverable amount of the resource might therefore not be determined by

geological constraints but by economic costs and the opportunity costs of backstop technologies (e.g., Farzin,

1992; Epple and Londregan, 1993; Farzin, 1996).

Furthermore, the carbon fluxes in the global carbon cycle are only roughly approximated by the pro-

portional decay of carbon in the atmosphere that implies that the atmospheric carbon storing capacity is

a renewable resource. The dimension and length of the anthropogenic disturbances to atmospheric car-

bon concentration is, besides the carbon emission path, mainly influenced by oceanic carbon uptake (e.g.,

Najjar, 1992; Sabine et al., 2004). Oceanic carbon uptake is estimated to increase disproportionally with

increasing atmospheric carbon concentration as the buffer capacity declines (e.g., Sarmiento et al., 1995).3

Even though uptake is currently mainly limited by kinetic constraints implied by the slow mixing of surface

waters with the deep ocean (e.g., Sarmiento and Gruber, 2006), it is important to note that a renewable

description of the atmospheric carbon concentration overestimates the storing capacity of the global carbon

cycle on timescales reasonable to mankind. Consequently, a proportional decay description oversimplifies

the atmospheric carbon accumulation problem (Farzin and Tahvonen, 1996; Rickels and Lontzek, 2011).

The IPCC (2005) special report on carbon dioxide capture and storage provides cost ranges for carbon

sequestration. The ranges indicate that sequestration costs vary by differences in the design of carbon

capture systems and by differences in the operating and financing of the reference plant to which the capture

technology is applied. Additionally, their estimates show that the costs increase as the transportation

2Chakravorty et al. (2006) distinguishes in his analysis between decreasing, constant, and increasing demand for energy. For
the first two assumptions, abatement takes place at the beginning of the ceiling, for the latter assumption at the end of the
ceiling.

3Note the buffer capacity should not be confused with the buffer or Revelle factor, as the latter measures the ratio of
the change in atmospheric carbon concentration to the change in oceanic carbon concentration, ∂ ln pCO2

∂ lnDIC
, and is therefore

increasing with anthropogenic carbon perturbation (Sarmiento and Gruber, 2006).

3



distance on land and on sea increases. By assuming that increasing the amount of carbon capture implies

that this technology has also to be applied to less efficient plants and plants that are located farther from

storage sites or the shore, the sequestration costs are expected to increase in a convex manner. This is

also usually assumed in quantitative analyses, like Gerlagh and van der Zwaan (2006), who assume carbon

sequestration to be described by an effort variable which is assumed to be a second-order polynomial function.

The captured carbon can be stored in geological formations like depleted oil fields or saline formations

(IPCC, 2005). However, it could also be injected into the deep ocean via pipelines or ships (Marchetti, 1977;

IPCC, 2005). As pointed out above, the ocean uptake is not linear, but it is expected that on timescales of

several hundred years it will take up about 80 percent of the anthropogenic carbon emitted to the atmosphere

(e.g., Archer et al., 1997; Körtzinger and Wallace, 2002; Sarmiento and Gruber, 2006). Consequently, when

this fraction of anthropogenic carbon enters the deep ocean, is just a matter of time. Even though currently

implicitly prohibited by the London protocol,4 deep ocean sequestration would be an option to accelerate

this process by overcoming kinetic constraints (Keeling, 2009). With respect to the overall carbon storage

capacity of the ocean, there are practically no physical limits to oceanic carbon sequestration. However,

carbon injected into the deep ocean in excess of the atmosphere-ocean equilibrium amount corresponding

to the atmospheric stabilization goal is expected to leak back into the atmosphere, because the ocean will

become supersaturated in relation to the atmosphere (IPCC, 2005).

Even though there are further papers that analyze the implications of a ceiling on atmospheric carbon,

none of these papers addresses the issue from the perspective used by Chakravorty et al. (2006) and Lafforgue

et al. (2008). The papers of Chakravorty et al. (2008) and Smulders and van der Werf (2008) focus on the

order of extraction of two fossil fuel resources when these differ with respect to their related carbon emissions.

Henriet (2010) focuses on the role of the backstop price and the optimal R&D effort to develop a backstop

technology. Dullieux et al. (2010) focus on the strategic interaction between consumers, who set the carbon

tax to comply with the ceiling, and fossil fuel producers, who respond by adjusting the fossil fuel prices.

However, none of these papers includes carbon sequestration. Hoel and Jensen (2010) focus on the strategic

implications involved in carbon sequestration by analyzing its implications in a two-stage decision problem.

Amigues et al. (2010) extend the model of Chakravorty et al. (2006) by including stock-dependent extraction

costs and the possibility of air capture. They analyze the optimal solution from a decentralized perspective

by assuming two different sectors that are distinguished by the availability of abatement options and costs

related to these options. They show that abatement can take place before the ceiling has been reached in the

sector with the lower abatement costs. However, their result originates from the decentralized perspective

4Paragraph 1.8 in Appendix 1 of the London Protocol allows dumping of “Carbon dioxide streams from carbon dioxide
capture processes for sequestration”. However, this is restricted by paragraph 4: “Carbon dioxide streams referred to in
paragraph 1.8 may only be considered for dumping, if: (1) disposal is into a sub-seabed geological formation; and (2) they
consist overwhelmingly of carbon dioxide. They may contain incidental associated substances derived from the source material
and the capture and sequestration processes used; and (3) no wastes or other matter are added for the purpose of disposing of
those wastes or other matter.”
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and not from the curvature of the related costs, as those are again assumed to be linear. All the papers

assume proportional atmospheric carbon decay, except Dullieux et al. (2010) and Hoel and Jensen (2010),

who assume no natural decay at all.5

The present paper is structured as follows. In Section 2, I explain the optimization problem involved

in using fossil fuels and a clean backstop-technology, while extraction costs are stock-dependent. Further-

more, I explain the description of the global carbon cycle using a two-box model. In Section 3 I show the

results. Section 3.1 provides the general conditions for the optimal solution. Section 3.2 analyzes first the

simple extraction-backstop decision and shows then that the description of the global carbon cycle using a

two-box model implies declining carbon emissions at the ceiling. Consequently, it is possible to observe the

simultaneous use of fossil fuels and the clean backstop technology from some point at the ceiling onwards

even if carbon sequestration is not available. Section 3.3 shows first the difference between convex and

linear sequestration costs by using the proportional decay description for the global carbon cycle. Whereas

linear sequestration costs imply that the ceiling is reached earlier than without sequestration, convex se-

questration costs allow the ceiling to be reached later. Additionally, convex sequestration costs imply that

such a technology is used in a continuous manner. Then I show that ocean sequestration allows the kinetic

constraints of oceanic carbon uptake to be overcome and that, even though the storage capacity of the

ocean is not scarce in and of itself, the ongoing saturation of the global carbon cycle determines the optimal

amount of sequestration. Finally, I present a numerical example to demonstrate the dynamics of the simple

extraction-backstop decision while atmospheric carbon concentration is limited with a ceiling and how the

dynamics change if ocean sequestration is included. I doing so, I distinguish whether sequestration costs are

linear or convex. Section 4 concludes.

2. Two-box model with oceanic carbon storage and ceiling

I investigate the dynamic global optimal sequestration decision in the presence of a ceiling on atmospheric

carbon stock as a social planner’s problem where the social rate of discount is assumed to be positive and

constant. The optimal sequestration decision is embedded in the decision regarding the global optimal energy

consumption. Energy consumption is composed of fossil-fuel-based energy, x(t), and non-fossil-fuel-based

energy like solar or wind power, y(t), which I denote as backstop technology. The total amount of energy

consumption, x(t) + y(t), generates gross utility in the social welfare function at any instant in time. Gross

utility is described by U(x(t) + y(t)) and is assumed to have the properties

Assumption 1. U ′ > 0, U ′′ < 0.

5Smulders and van der Werf (2008) assume a ceiling for the flow of emissions and abstract therefore from atmospheric carbon
accumulation. Note that a ceiling on the flow of emissions, e.g., q̄, implies an atmospheric carbon stock with proportional decay,
e.g., −βS(t), where the emission flow ceiling is equal to natural decay, so that q̄ = βS(t).
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The extraction of fossil fuels generates extraction costs at any instant in time which are assumed to depend

on the resource stock R(t) and the extraction cost function C(R) is assumed to have the property

Assumption 2. C′(R) < 0,

so that extraction costs increase with the rate of exploitation of the available resource resource stock:6

Ṙ = −x(t) with R(t0) = R0. (1)

Following Chakravorty et al. (2006) and Lafforgue et al. (2008), I assume that the backstop technology

has constant unit costs cy and can be provided at an extent such that U ′(y(t)) = cy with y(t) = ȳ > 0 is

feasible at each point in time. Due to the presence of a backstop technology with the constant unit costs

cy, there is no need to specify whether the utility function satisfies the Inada condition or entails a choke

price, U ′(0) = b < ∞, as long as b > cy. With respect to the constant unit costs of the backstop technology,

I assume

Assumption 3. R0 > C−1(cy),

because otherwise energy consumption would only be provided by the backstop technology. In Section 3.2,

I investigate this basic extraction-backstop optimization problem and refer to it as Scenario Ext.

The proportional amount of carbon emissions related to fossil fuels consumption (the proportionality

factor is assumed to be one) increases the amount of carbon in the atmosphere and therefore in the global

carbon cycle. The global carbon cycle is represented by a two-box model, where the upper box S(t) entails

the sum of the carbon stock in the atmosphere and the upper ocean and the lower box W (t) entails the

carbon stock in the deep ocean:

Ṡ = x(t) − γ(S(t)− ωW (t)) with S(t0) = S0, (2)

Ẇ = γ(S(t)− ωW (t)) with W (t0) = W0. (3)

The atmospheric carbon stock is assumed to be a constant fraction of S(t).7 In the equations of motion

for the upper and lower box, (2) and (3), the amounts γS(t) and γωW (t) represent the natural fluxes

between the boxes, which amount to a net transfer if there is a difference between the relative stock sizes,

e.g., S(t) > ωW (t). Consequently, an increase in the atmospheric carbon concentration and therefore an

6An alternative formulation would be to model extraction costs to be increasing in the cumulative amount of fossil fuels
extracted: C(X) with C′ > 0, while X(t) =

∫ t

0
q(τ)dτ (Farzin, 1992).

7There is a net transfer of carbon between the atmosphere and the upper mixed layer of the ocean if there is a difference in
the partial pressure of carbon dioxide (pCO2) between these two reservoirs. It takes around one year for the upper layer of the
ocean to equilibrate with the atmosphere. Consequently, I assume that the atmosphere and the upper mixed layer are always
in equilibrium and focus on the transport of anthropogenic carbon to the deeper parts of the ocean, which is the limiting factor
of oceanic carbon uptake.
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increase in the carbon stock in the upper box causes a net downward transfer of excess carbon into the

deep ocean because up-welling water is still free of excess anthropogenic carbon. The deep ocean saturates

with anthropogenic carbon only at the rate ω because anthropogenic carbon reacts with carbonate ions

to bicarbonate ions. Consequently, the term inside the parenthesis of the net exchange can be interpreted

as a simplified representation of the chemical reactions caused by the uptake of anthropogenic carbon by

the ocean.8 The parameter γ represents the kinetic constraint, as it measures the speed of the adjustment

process. Taking into account the inertia of the carbon cycle with respect to the carbon exchange with the

deep ocean, realistic initial values are restricted to satisfy S0 ≥ ωW0. For simplicity I impose

Assumption 4. S0 = ωW0.

Even though the two-box model is a very simple representation of the global carbon cycle, it allows a more

appropriate description of the inertia and the non-renewable aspects of the global carbon cycle than the

proportional-decay description does. A more detailed description of this two-box model can be found in

Rickels and Lontzek (2011), where it is also shown that the two-box model does not provide any advantages

in itself compared to modeling the atmospheric carbon stock as a partially renewable resource, as is done in

Farzin and Tahvonen (1996), but becomes indispensable if options like ocean sequestration are considered.

An overview of such box models used to represent the dynamics of the global carbon cycle can be found

in Sarmiento and Gruber (2006). Even though the carbon stock in the upper box entails atmospheric and

oceanic carbon, I refer to it as the atmospheric carbon stock and to the carbon stock in the lower box as the

oceanic carbon stock. If we abstract from the ongoing saturation of the ocean with anthropogenic carbon,

the oceanic uptake would only be limited by the kinetic constraint and we would regain the proportional

decay description as used by Chakravorty et al. (2006) and Lafforgue et al. (2008): Ṡ = x(t) − γdS(t),

implying that all anthropogenic carbon will be taken up by the ocean in the long run, Ẇ = γdS(t). The

subscript d indicates that the parameter value does not necessarily coincide in the two-box model and the

proportional decay description because in the latter the initial value of S is normalized to represent the

deviation from its preindustrial level.

Further, I assume that society has agreed on that atmospheric carbon concentration should not exceed

a certain ceiling:

Assumption 5. S̄ ≥ S(t) for t ǫ (0,∞) with S̄ > S0.

In Section 3.2, I investigate in the Scenario Ceil how the basic extraction-backstop optimization problem

changes in the presence of a ceiling on atmospheric carbon concentration when the global carbon cycle is

described by the two-box model.

8I abstract from chemical reactions with the sediments and chemical reactions due to enhanced weathering. These reactions
operate on timescales of 1000 to 100 000 years and are assumed to be beyond the economic optimization horizon due to
discounting.
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Additional to releasing carbon emissions into the atmosphere, I assume that these emissions can also

be captured and injected into the deep ocean for purposes of ocean sequestration. I subdivide the total

amount of fossil fuels extracted into those with related emissions released into the atmosphere q(t) and

those with related emissions captured and injected into the deep ocean a(t), so that x(t) = q(t) + a(t) with

q(t), a(t) ≥ 0.9

Ocean sequestration generates additional costs in the social welfare function at any instant in time.

These costs are assumed to be described by A(a(t)) and summarize the costs of carbon capture in energy

generation, transportation of carbon to the shore, and injecting it via pipelines or ships into the deep ocean.

I distinguish two cases for the properties of A(a(t)):

Assumption 6. Case C: A′ = ac and Case X: A′ > 0, A′′ > 0.

The costs are measured in the same units as utility. In Section 3.3, I investigate the optimal sequestration

decision for both cases when the global carbon cycle is described either by proportional decay or the two-

box model. With the former description, this model version coincides with the one used by Chakravorty

et al. (2006) apart from stock-dependent extraction costs. Even though Chakravorty et al. refer to the

control variable a(t) as abatement, it should be noted that there exist literally no abatement measures for

fossil-fuel-related carbon emissions once the fossil fuels have been combusted.10 Consequently, abatement

in this context can be interpreted as sequestration without scarcity of the carbon storing facility. I refer to

the two scenarios with the proportional decay description as AC and AX , and to the two scenarios with the

two-box model description as SeqC and SeqX .

3. Results

3.1. Optimal solution conditions

The social welfare function can be formalized as follows:

max
q(t),a(t),y(t)

∫

∞

0

(U(q(t) + a(t) + y(t))− C(R(t))(q(t) + a(t))−A(a(t)) − cyy(t))e
−ρtdt, (4)

with q(t), a(t), y(t) ≥ 0, (5)

9Note that I could also apply the control variables x(t) and a(t) instead of q(t) and a(t), which would imply that only the
net emissions x(t) − a(t) would be released into the upper box and the resource stock would decrease by x(t). In doing so,
I would retain the model description of Chakravorty et al. (2006) and Lafforgue et al. (2008), where it becomes necessary to
include the additional control constraints x(t) − a(t) ≥ 0 if you do not want to consider the possibility of air capture.

10With respect to abatement the variable a(t) could also be interpreted as costly additional efficiency gains, so that the
amount of energy provided by q(t) increases to q(t) + a(t). A more profound description of this interpretation would be
a(t)q(t), with a(t)ǫ(aBAU , amax), where an increase in energy efficiency to above its business-as-usual (BAU) level would be
associated with additional costs.
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where ρ is the constant social rate of discount and the dynamic and state variable constraints are given by

Ṡ = q(t)− γS(t)− γωW (t) with S(t0) = S0, (6)

Ẇ = a(t) + γS(t)− γωW (t) with W (t0) = W0, (7)

Ṙ = −q(t)− a(t) with R(t0) = R0, (8)

S(t) ≤ S̄. (9)

If the carbon cycle is described using the proportional decay description, the term γωW (t) drops out in (6)

and (7) and γ is replaced by γd. From now on, I drop the time variable whenever it is convenient and the

optimization problem described in (4) to (9) leads to the corresponding current value Lagrangian

Lc = U(q+a+y)−A(a)−C(R)(q+a)−cyy−λRṘ−λSṠ−λW Ẇ−θ1(−q)−θ2(−a)−θ3(−y)−θ4(S(t)−S̄), (10)

where

lim
t→∞

R(t) ≥ 0, lim
t→∞

S(t) ≥ 0, lim
t→∞

W (t) ≥ 0. (11)

I have changed the signs of the costate variables, λS and λW , in order to facilitate their economic inter-

pretation as taxes. According to Proposition 6.2 and Propostion 7.5 in Feichtinger and Hartl (1986), the

admissible solution has to fulfill the necessary conditions

∂Lc

∂q
= 0 ⇒ U ′

− C(R)− λR − λS + θ1 = 0, (12)

∂Lc

∂a
= 0 ⇒ U ′

− C(R)−A′
− λR − λW + θ2 = 0, (13)

∂Lc

∂y
= 0 ⇒ U ′

− cy + θ3 = 0, (14)

−
∂Lc

∂R
= λ̇R − ρλR ⇒ C′(R)(q + a) = λ̇R − ρλR, (15)

−
∂Lc

∂S
= −λ̇S + ρλS ⇒ γλS − γλW − θ4 = λ̇S − ρλS , (16)

−
∂Lc

∂W
= − ˙λW + ρλW ⇒ −γωλS + γωλW = ˙λW − ρλW , (17)

∂Lc

∂θ1
≥ 0 θ1 ≥ 0 θ1(−q) = 0, (18)

∂Lc

∂θ2
≥ 0 θ2 ≥ 0 θ2(−a) = 0, (19)

∂Lc

∂θ3
≥ 0 θ3 ≥ 0 θ3(−y) = 0, (20)

∂Lc

∂θ4
≥ 0 θ4 ≥ 0 θ4(S − S̄) = 0, (21)
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and also the transversality conditions11

lim
t→∞

e−ρtλRR = 0, lim
t→∞

e−ρtλS = 0, lim
t→∞

e−ρtλW = 0, . (22)

Given the necessary conditions (12) to (22) are fulfilled, the solution is optimal because the control constraints

fulfill the constraint qualification (see Appendix A) and are quasi-concave, because the equations of motion

are described by linear equations and because the maximized Hamiltonian is concave in the state variables

(see Appendix A)(Feichtinger and Hartl, 1986, p.181, Proposition 7.5). Given the optimization problem

did not entail the backstop technology y and sequestration costs had the properties according to Case X

in Assumption 6, the Hamiltonian would be strictly concave in the control variables (see Appendix A),

which implies that the control variables are continuous (Feichtinger and Hartl, 1986, p.167, Corollary 6.2).

Without this restriction, jumps in the controls variables can be observed when using sequestration (Case

C) and switching to the backstop technology. Even though there can be jumps in the control variables,

the costate variables are continuous if the ceiling constraint for the atmospheric carbon stock is not just

tangentially approached (Feichtinger and Hartl, 1986, p.168, Corollary 6.3).

Note the equations of motion (6) to (8) constitute a closed system, so that ,e.g., a decrease in the

resource stock must be balanced by an equivalent increase in the atmospheric and oceanic carbon stock,

Ṡ+ Ẇ + Ṙ = 0. Therefore, it is possible to reduce the system by replacing one of the state variables. I refer

to such a reduced system as a ReduxX system, where the superscript indicates the dropped state variable.

If the oceanic carbon stock has been excluded, the equation of motions for ReduxW would read as follows:

ṘW = −q − a, (23)

ṠW = q − γ(S − ω(K0 − S − R)), (24)

where K0 is the sum of the initial values of the stock variables K0 = S0 +W0 +R0. In the ReduxX system

the corresponding costate variable λX vanishes and the remaining two costate variables then also measure

the influence of the omitted state variable on the objective function.

3.2. Stock-dependent extraction costs and the two-box model

I consider first the implications of our model without the option of oceanic carbon storage to clarify the

implications of stock-dependent extraction costs and the two-box model description of the global carbon

cycle. However, independent of the carbon cycle representation, without a ceiling on the atmospheric carbon

11As any admissible path for the state and costate variables is non negative and as any admissible path for the state variables
is bounded due to the description of the carbon cycle as a closed system, the fulfillment of the transversality conditions, (22), is
sufficient for the fulfillment of the general transversality conditions in a infinity horizon problem (Feichtinger and Hartl, 1986,
Remark 2.9 and Remark 7.5).
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stock in Scenario Ext, the optimization problem reduces to the simple extraction-backstop decision. The

optimal solution is determined by the stock-dependent extraction costs C(R), the shadow resource scarcity

rent λR, and the constant price of the backstop technology cy. As atmospheric or oceanic carbon stocks do

not affect the objective function, the corresponding costate variables λS and λW are zero.12 The marginal

costs for fossil fuel extraction are increasing whereas the marginal costs of using the backstop technology are

constant. Consequently, fossil fuels and backstop technology are not used simultaneously (e.g., Dasgupta

and Heal, 1979). From Assumption 3 follows that there will be first a period when energy consumption is

only provided by fossil fuels. The dynamics are described by

q̇ =
ρ(U ′ − C(R))

U ′′
, (25)

Ṙ = −q, (26)

indicating that both q and R are monotonically decreasing until q = ȳ. At this point in time fossil fuel

extraction drops to zero and energy consumption switches to the backstop technology for t ǫ (tb,∞) where tb

denotes the switching point. As shown by Farzin (1996), the inclusion of stock-dependent extraction costs

changes the behavior of the shadow scarcity rent and the total amount of fossil fuel extraction, which is

summarized in the context of our model in the presence of a backstop technology in the following proposition.

Proposition 1. If C(0) ≥ cy and Assumption 3 holds, R(tb) = R∞ ≥ 0, and λR(tb) = 0, with λ̇R < 0 for

t ǫ (0, tb), and λ̇R = 0 for t ǫ (tb,∞). If C(0) < cy and Assumption 3 holds, R(tb) = 0, λR(tb) = cy − C(0),

with λ̇R < 0 for t ǫ (0, tb), and λ̇R > 0 for t ǫ (tb,∞).

Proof. At the switching point tb, the marginal costs for extraction and the backstop technology have to be

equal. Any solution including C(R(tb) + λR(tb) = cy cannot be optimal because a lower λR(tb) would allow

q(tb) > ȳ, so that the objective could be raised by increasing tb. Consequently, λR is decreasing until either

C(R(tb)) = cy with λR(tb) = 0 or until R(tb) = 0 with λR(tb) = cy −C(0). The closed form solution for λR

is

C(0) ≥ cy λR(t) =
∫ t

tb
C′(R(τ))q(τ)e−ρ(τ−t)dτ,

C(0) < cy λR(t) = (cy − C(0))e−ρ(tb−t) +
∫ t

tb
C′(R(τ))q(τ)e−ρ(τ−t)dτ,

(27)

which shows that the transversality condition limt→∞ e−ρtλRR = 0 is fulfilled because

either λR(tb) = λR(t)t→∞ = 0 or R∞ = 0.

In contrast to Chakravorty et al. (2006) and Lafforgue et al. (2008), the shadow scarcity rent is declining

12This can also be seen from the closed-form solution for λS in, e.g., the ReduxW system: λW
S (t) = λS0e

(γ+γω+ρ)t. If the
initial level λS0 is positive, the transversality condition would be violated because θ4 is zero due to the non existent ceiling
and limt→∞ λS(t) = ∞.
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and the fossil fuel stock is not necessarily entirely extracted because extraction costs are modeled as stock-

dependent. Moreover, the possibility that C(0) < cy is more a theoretical concept, as it implies that

extraction costs are still below the cost of the backstop technology when fossil fuel stocks are completely

depleted. The more reasonable concept seems to be C(0) > cy so that the amount of the economic recoverable

resource is endogenously determined by C−1(cy) = R(tb) = Rb > 0 (Farzin, 1996).

The carbon emissions related to the extraction in Scenario Ext affect the dynamics of the global carbon

cycle. According to Assumption 4, atmospheric carbon concentration is initially increasing and thereby also

the net transfer into the deep ocean nt = γS − γωW because the downward flux increases by γ, whereas

the upward flux only by γω. Even if Assumption 4 is not fulfilled, oceanic carbon stock is monotonically

increasing given the initial values fulfill S0 > ωW0.
13 However, atmospheric carbon concentration increases

at a declining rate (S̈ < 0) or might even reverse its sign (Ṡ < 0) because of the monotonically decreasing

carbon emissions.

Proposition 2. If Assumption 4 is fulfilled, atmospheric carbon concentration approaches a unique peak

concentration Sp at tp with 0 < tp ≤ tb if U ′′′ > 0.

Proof. If atmospheric carbon concentration is monotonically increasing until tb, the peak concentration will

be approached at tp = tb because from Ṡ = q(tb)− γS(tb) − γωW (tb) > 0, from the continuity in the state

variables, and from q(tb) = ȳ > 0 follows that Ṡ = γS(tb + ǫ)− γωW (tb + ǫ) < 0 with ǫ → 0. If atmospheric

carbon concentration is not monotonically increasing until tb, the peak concentration will be approached at

tp < tb with −
q̇
q
> γω which follows from S̈R = q̇ − γωṘR < 0. The atmospheric carbon concentration can

only once reverse its sign between t ǫ (0, tb). Observing two extrema would require

Smax : −q̇/q > γω

Smin : −q̇/q < γω,
(28)

requiring an inflection point for q between Smax and Smin. From

q̈ =
ρ(U ′′q̇ + C′(R)q)U ′′ − ρ(U ′ − C(R))U ′′′q̇

(U ′′)2
(29)

it can be seen that q̈ = 0 is not feasible if U ′′′ > 0 because U ′ − C(R) < 0 follows from the necessary

optimality condition (12).

The proposition would also be valid if Assumption 4 only required qExt
0 > γ(S0 − ωW0), where qExt

0 is

13This can be seen from the closed-form solution for W (t) if emissions are zero: W (t) = e−(γ+γω)t(ωW0−S0

1+ω
) + 1

1+ω
W0,

where the first term inside the parentheses is zero if the initial values constitute a carbon cycle equilibrium but is negative if
initial atmospheric carbon concentration has already increased. As the parentheses are multiplied by a declining exponential
term, the oceanic carbon stock is monotonically increasing. This property does not change if carbon emissions are included
because these are only released into the atmosphere.

12



the initial amount of carbon emissions in Scenario Ext. From the proposition, it follows that if qExt
0 <

γ(S0−ωW0), the atmospheric carbon concentration is either monotonically decreasing until t → ∞ or is U-

shaped until tb with Sp(tb) ⋚ S0. However, no matter when the atmospheric peak concentration is reached,

the carbon cycle is in disequilibrium at tb because q(tb) = ȳ > 0. Consequently, the steady state values for

atmospheric and oceanic carbon stocks are approached by the natural adjustment process, as t → ∞, and

are given by

S∞ =
ω

1 + ω
(S0 +W0 +R0 −Rb), W∞ =

1

1 + ω
(S0 +W0 +R0 −Rb). (30)

I turn now to Scenario Ceil, where atmospheric carbon stock is limited by a ceiling S(t) ≤ S̄ . If S∞ > S̄,

the ceiling would be limiting for the total carbon accumulation in the carbon cycle and the total amount of

fossil fuel extraction would decrease to

∫ tCeil

b

0

qCeil(τ)dτ =
1 + ω

ω
S̄ − S0 −W0 = R0 −RCeil

b < R0 −RExt
b . (31)

If Sp < S̄ holds, the ceiling would never be binding and the optimal solution would coincide with the

solution in Scenario Ext. With respect to the total storing capacity of the global carbon cycle but also the

inertia of oceanic carbon uptake, I focus on the situation where the ceiling only limits the atmospheric peak

concentration SExt
p > S̄ > S∞ > S0. SExt

p > S̄ implies that tCeil
cr < tCeil

cl , where tcr and tcl denote the

points in time when the ceiling is reached and left, respectively. S̄ > S∞ implies that the total amount of

fossil fuel extraction is not affected (SExt
∞

= SCeil
∞

) but that the extraction dynamics are. S̄ > S0 implies a

period in the beginning when atmospheric carbon stock is below the ceiling. The binding ceiling requires

θ4 to be positive between tCeil
cr and tCeil

cl , resulting in positive costate variables λS and λW for t ǫ (0, tCeil
cl ),

where λS measures the shadow environmental scarcity rent of the atmospheric carbon storing capacity and

λW measures the shadow environmental scarcity rent of the oceanic carbon storing capacity (Farzin, 1996).

The overall carbon storing capacity is only scarce before and at the ceiling. Once the ceiling has been left,

there is no scarcity and therefore λS(t) = λW (t) = 0 for t ǫ (tcl,∞). The dynamics of the costate variables

can be seen from the closed form for λS in the ReduxW system14:

λW
S (t) = λW

S0e
(ρ+γ+γω)t

−

∫ t

0

θ4(τ)e
−(ρ+γ+γω)(τ−t)dτ (32)

The closed form shows that the costate variables in the ReduxW system and therefore both costate vari-

ables in the complete system are increasing on the path towards the ceiling and decreasing at the ceiling

because θ4(t) = 0 for t ǫ (0, tcr) and θ4(t) ≥ 0 for t ǫ (tcr, tcl) with λS(t) ≥ λW (t) for t ǫ (0, tcl) For the

14The costate variable associated to the atmospheric carbon stock in the ReduxW system is equal to the tax difference in
the complete system: λ̇S − λ̇W = (λS − λW )(ρ + γ + γω) + θ4.
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atmospheric carbon stock at the ceiling, the entire dynamics are exogenously determined by the two-box

model description.

Proposition 3. When atmospheric carbon concentration is at the ceiling, extraction is monotonically de-

creasing at a constant contraction rate −γω.

Proof. From ṠW = 0 = q − (γ + γω)S̄ + γω(K0 −R(t)) follows that q̇
q
= −γω.

In contrast to Chakravorty et al. (2006) and Lafforgue et al. (2008) extraction is not constant but decreasing

at the ceiling because of the increasing saturation of the carbon cycle with anthropogenic carbon. This is

implicitly confirmed by Farzin and Tahvonen (1996) who capture the non-renewable aspect of the global

carbon cycle by artificially dividing the atmospheric carbon stock into two stock, on with decay and the other

one without. However, they consider a damage function to measure the social costs of increasing atmospheric

carbon concentration instead of a ceiling. They show that for certain functional forms and initial levels the

situation of a stationary policy arises, where atmospheric carbon concentration is constant and extraction

is decreasing at a constant contraction rate. The differences between a two-box model description versus

an artificially division of the atmospheric carbon stock are further discussed in Rickels and Lontzek (2011).

They show that the two-box model does not provide an advantage in itself, but becomes indispensable if

options like ocean sequestration are investigated.

With the two-box model the relationship between the resource stock and the amount of extraction at

the ceiling is linear:

qCeil
c (R) = K1 + γωR with K1 = (γ + γω)S̄ − γωK0, (33)

which follows from ṠW = 0. Using this relation, three cases can be distinguished for switching to the

backstop technology.

Case 1: If qCeil
c (Rb) > ȳ holds, the ceiling will be left before energy consumption switches to the backstop

technology. The point in time when the ceiling is left tCeil
cl is determined by qCeil

c (R) = qExt(R, λR) and

I denote the corresponding resource stock by RCeil
cl . From tCeil

cl until tb, the dynamics are determined

by Scenario Ext, where the initial level for the resource stock is RCeil
cl . Energy consumption switches

to the backstop technology at tCeil
b with tCeil

cl < tCeil
b .

Case 2: If qCeil
c (Rb) < ȳ holds, the backstop technology will already be used at the ceiling and tCeil

b is

determined by qCeil
c (R) = ȳ with R > RExt

b . Instead of a complete switch to the backstop technology

at tCeil
b , both energy sources will be used simultaneously in this case. From tCeil

b onwards, energy

consumption is fixed at ȳ = qCeil
c (R) + y(t), where qCeil

c (R) is monotonically decreasing (according to

Proposition 3) and in turn y(t) is monotonically increasing. Simultaneous use requires the marginal
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costs for both energy sources to be equal cy = C(R)+λCeil
R +λCeil

S , which holds true until R(t) = Rb,

so that cy = C(Rb) and λCeil
R = λCeil

S = 0. At this point in time, the ceiling is left and the consumption

of the backstop technology jumps from ȳ− qCeil
c (Rb) up to ȳ, whereas consumption of fossil-fuel-based

energy jumps to zero. Consequently, in this case tCeil
cl > tCeil

b holds.

Case 3: If qCeil
c (Rb) = ȳ holds, the ceiling will be left at the point in time when energy consumption

switches to the backstop technology. Consequently, in this case tCeil
cl = tCeil

b holds.

In Case 1 and Case 3, the marginal costs of extraction are monotonically decreasing, but in Case 2 marginal

costs are constant during the simultaneous use of both energy sources, implying λS to be decreasing at a

slower rate after tCeil
b . This case is investigated in more detail in Chakravorty et al. (2006) but with the

carbon cycle being described by proportional decay so that extraction is constant at the ceiling, q̄c = γdS̄. If

γdS̄ < ȳ, backstop technology utilization will start at a level of y(t) = ȳ−γdS̄ once the ceiling is approached.

Observing starting points for backstop technology utilization later at the ceiling requires the inclusion of

sequestration so that energy consumption is above ȳ at the beginning of the binding ceiling. The two-box

model description allows such a result to be observed without the inclusion of sequestration. Following

Lafforgue et al. (2008), I focus on Case 1 where qCeil
c (Rb) > ȳ.

Obviously, the ceiling is reached later in Scenario Ceil than it is exceeded in Scenario Ext, tCeil
cr > tExt

cr

because qExt(R0, λR0) > qCeil(R0, λR0, λS0) and qExt(tExt
cr ) > qCeil(tExt

cr ). Accordingly, the resource stock

R(tcr) = Rcr also changes.

Proposition 4. The ceiling is approached with a lower fossil fuel resource stock in Scenario Ceil than in

Scenario Ext: RCeil
cr < RExt

cr .

Proof. This can be seen from the closed-form solution for S(t) in the ReduxW system:

S(t) = e−(γ+γω)t

(∫ t

0

((q(τ) − γωR(τ))e(γ+γω)τdτ +
S0

1 + ω
−

ω(R0 +W0)

1 + ω

)

+
ωK0

1 + ω
. (34)

By taking the derivative with respect to time at tcr where S(tcr) = S̄ one obtains

γωR(tcr)− q(tcr)

γ + γω
= S̄ −

ωK0

1 + ω
, (35)

from which follows that a lower amount of extraction in Scenario Ceil at tcr also implies a lower fossil fuel

resource stock.

The ceiling is not just approached later due to the lower extraction rate in Scenario Ceil but also to the

higher cumulative oceanic carbon uptake compared to Scenario Ext: WCeil(tcr) = K0 − S̄ − RCeil
cr >

WExt(tcr) = K0 − S̄ −RExt
cr .
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Note that the cumulative oceanic uptake with the two-box model at tcr, does not necessarily differ from

the cumulative uptake obtained with the proportional decay assumption, W (t) = γd
∫ t

0
S(t) + W0, if the

decay parameter γd is chosen appropriately:

γd =
e−γωtγ

∫ t

0 S
Ceil(τ)eγωτdτ +W0(e

−γωt − 1)
∫ t

0 S
Ceil
d (τ)dτ

. (36)

Obviously, γd varies with time, so that the endogenous oceanic carbon uptake in the two-box model de-

scription also alters the optimal extraction path before the ceiling has been approached compared to the

proportional decay description. If the ceiling is approached at the same point in time with both the propor-

tional decay and the two-box model description, then the initial extraction must be larger with the latter

description as the net transfer into the deep ocean is not only influenced by the atmospheric carbon stock

but also by the saturation of the ocean with anthropogenic carbon. Therefore, the dynamics of λS are

influenced by the oceanic saturation, as it can be seen from (16) and (17). The initial level of λS is not only

influenced by S0 but also by W0, where an initial lower oceanic saturation level implies a lower value for λS

for a given value of S0.

3.3. Convex sequestration costs and oceanic carbon storage

We include now the option of capturing carbon and injecting it into the deep ocean. The implications

for the optimal solution depend crucially on the behavior of the costs associated with such an activity.

According to Assumption 6, we distinguish between A′ = ac, as is assumed in Chakravorty et al. (2006) and

Lafforgue et al. (2008) and A′ > 0 with A′′ > 0. To clarify the difference, we apply first the proportional

decay description for the global carbon cycle without endogenous oceanic carbon uptake as is done in those

papers and investigate the Scenarios AC and AX .15 Note that with the proportional decay description,

W (t) does not affect the objective function so that it does not have to be included in the Hamiltonian

function. Consequently, the necessary conditions for an optimal solution are only described by (12) to (16)

and (18) to (22), where λW vanishes in conditions (13), (15), and (22). Considering ocean sequestration

with a proportional decay description is equivalent to considering geological storage without scarcity with

respect to storage volume. Furthermore, we presuppose that the Scenarios Ext and Ceil can be accordingly

defined for the proportional decay description.

In Scenario AC, it follows from conditions (12) and (13) that only the total amount of fossil fuel energy

consumption xAC = qAC + aAC is determined and that positive sequestration requires λS = ac. However,

even if the latter condition were fulfilled, it would be beneficial to provide total energy consumption only

by qAC because aAC > 0 would imply additional costs in the objective function. This changes if qAC is

15From Assumption 4 follows that the initial value S0 has to be normalized to be zero for the proportional decay description.
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determined by the binding ceiling to be qAC = γdS̄, implying that aAC = x − γdS̄, as pointed out by

Chakravorty et al. (2006) and Lafforgue et al. (2008). From ac > 0 and U ′(γdS̄) − C(R(tcl) − λR(tcl) = 0

follows that there exists a point in time tAC
a < tAC

cl where U ′(γdS̄) − C(R) − λR − λS − ac = 0, so that

sequestration does not take place over the entire period at the ceiling. The price continuity condition implied

by (12) requires that qAC(tAC
cr ) = γdS̄ + aAC(tAC

cr ).16 Consequently, at tAC
cr , qAC jumps down from xAC to

γdS̄ and aAC jumps up from zero to xAC−γdS̄. The costate variable λ
AC
S is increasing, constant, decreasing,

and zero for t ǫ (0, tAC
cr ), (tAC

cr , tAT
a ), (tAC

a , tAC
cl ), and (tAC

cl ,∞), respectively, implying that λAC
S stays at its

maximum value for t ǫ (tAC
cr , tAC

a ), which is equal to ac (Chakravorty et al., 2006; Lafforgue et al., 2008).

In ScenarioAX , the regularity condition for q and a is fulfilled, so that the control variables are continuous

apart from the switch to the backstop technology that is assumed to take place after the ceiling has been

left. Conditions (12) and (13) determine not only the total optimal amount of energy consumption but

also its composition because A′(aAX) = λS . From the continuity in the control variables follows that

qAX(tAX
cr ) = γS̄. The costate variable λAX

S is increasing, decreasing, and zero for t ǫ (0, tAX
cr ), (tAX

cr , tAX
cl ), and

(tAX
cl ,∞), respectively, implying that λAX

S approaches its maximum value at tAX
cr . If A′(0) = 0, sequestration

will be used for t ǫ (0, tAX
cl ); if A′(0) > 0, sequestration will be used for t ǫ (tAX

as , tAX
ae ) with 0 ≤ tAX

as < tAX
cr <

tAX
ae < tAX

cl . From λAX
S0 > 0 follows that even if A′(0) > 0 holds, sequestration can start at t = 0, but must

end before tAX
cl because λAX

S (tAX
cl ) = 0.

Proposition 5. If sequestration costs are constant, sequestration is used only at the ceiling and the ceiling

is approached earlier than without sequestration. If sequestration costs are convex, sequestration is also used

before the ceiling is approached and the ceiling can also be approached later than without sequestration.

Proof. In both scenarios, AC and AX , energy consumption x is larger at tcr than in Scenario Ceil if

sequestration is used, requiring the right hand side in (12) to be smaller. If tAC
cr = tAX

cr = tCeil
cr , λS(tcr) is

lower in scenario AC and AX . From λS(t) = λ0e
(ρ+γ)t follows for both scenarios that also the initial values

are lower, so that then x(t) > xCeil(t) for t ǫ (0, tcr) extraction is monotonically decreasing. Consequently, in

Scenario AC xAC = qAC(t) > xCeil = qCeil(t) holds for t ǫ (0, tcr). From S(tcr) = S̄ =
∫ tcr

0 q(τ)e−γ(tcr−τ)dτ

follows that tAC
cr < tCeil

cr . In Scenario AX , it follows from

qAX(t) = U ′−1(C(R) + λR + λS)−A′−1(λS) (37)

that qAX(t) ⋚ qCeil(t) for t ǫ (0, tcr) is possible because ∂qAX

∂λS
= (U ′−1)′λS

− (A′−1)′λS
< 0. Even though

∫ tcr

0 xAX(τ)dτ =
∫ tcr

0 qAX(τ) + aAX(τ)dτ >
∫ tcr

0 qCeil(τ)dτ needs to be fulfilled, it is possible that
∫ tcr
0 qAX(τ)dτ ⋚

∫ tcr
0 qCeil(τ)dτ , so that from S(tcr) = S̄ =

∫ tcr
0 q(τ)e−γ(tcr−τdτ follows tAX

cr ⋚ tCeil
cr .

16This can also be seen by the carbon balance equation:
∫ tcr
0 qAC(τ)dτ + γS̄ (tcl − tcr) +

∫ ta
tcr

aAC(τ)dτ +
∫ tb
tcl

qAC(τ)dτ =

R0 − Rb. From derivation with respect to tcr follows qAC(tcr) = aAC(tcr) + γdS̄.
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With respect to the point in time when the ceiling is reached, Chakravorty et al. (2006) argue that if

sequestration is costless, the energy consumption from Scenario Ext is realized and therefore the ceiling is

approached earlier than in Scenario Ceil, while qExt(t)− γS̄ is sequestered once the ceiling is reached with

λAC
S (t) = 0 for tǫ(0,∞). But one could also argue that if sequestration is costless, Condition (12) and (13)

coincide and only total energy consumption x is determined to be equal to qExt. Consequently, it is also

possible to use sequestration for total energy consumption so that the atmospheric carbon stock would remain

unchanged and never reach the ceiling. Assuming very small sequestration costs, then in both Scenarios

AC and AX , almost the energy consumption of Scenario Ext would be realized. However, in Scenario AC,

sequestration is only realized at the ceiling, which is approached only slightly later than in Scenario Ext,

whereas in in Scenario AX , a substantial fraction of energy consumption involves sequestration before and

at the ceiling, so that the ceiling is approached substantially later than in Scenario Ext and probably also

later than in Scenario Ceil.17

In Scenarios AC and AX , it is assumed that sequestration is determined only by the associated costs and

not by the availability of appropriate storage sides. The case where a scarcity of the carbon storing capacity

of geological reservoirs exists, is investigated for constant sequestration costs by Lafforgue et al. (2008). If the

cumulative stored amount of carbon for Scenario AC or AX , denoted by, e.g., A(t) =
∫ t

0 a(τ)dτ , exceeds the

capacity of the geological reservoir, denoted by, e.g., Ā, an additional costate variable measuring this scarcity,

e.g., λA, has be to included in the optimization problem. The amount of sequestration is determined not

only by the sequestration costs and the scarcity of atmospheric storing capacity with respect to the ceiling

but also by the scarcity of the storing capacity: A′(a) = λS − λA. Irrespective of whether sequestration

takes place before the atmospheric ceiling has been reached, as in Scenario AX , or once the ceiling has

been reached, as in Scenario AC, the overall period of sequestration shrinks, so that
∫ t2

t1
a(τ)dτ = Ā. Even

if A′(0) = 0 holds in Scenario AX , sequestration ends before tcl because λS is decreasing at the ceiling

whereas λA(t) = λA0e
ρt is monotonically increasing until the storing limit has been reached. Obviously,

even if sequestration is costless, the extraction path of Scenario Ext is not regained. Lafforgue et al. (2008)

distinguish between the case where only one or the case where many geological reservoirs exists. The former

case implies that sequestration cost are equal for all geological reservoirs and only the overall storing capacity

has to be considered. The latter case requires that sequestration costs differ with respect to the geological

reservoirs. They show that the reservoirs are used for sequestration in ascending order with respect to their

costs without the simultaneous use of two reservoirs. This results requires, apart from the sequestration unit

cost being constant, that there is no kind of regeneration of the reservoirs, e.g., due to chemical processes

or leakage. This can easily been seen by thinking about the overall optimization problem of storing carbon

17The fraction of total energy consumption that involves sequestration in Scenario AX is relative to
λAX
S

C(R)+λAX
R

+λAX
S

, so

that the share of sequestration is largest at tAX
cr .
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in reservoirs with limited capacity, where the atmosphere is the cheapest storing reservoir that regenerates

naturally. The case of multiple reservoirs n with different costs shows that even if overall storing capacity

is not limited, e.g.,
∫ tcl
0 a(τ)dτ < Ā =

∑n
1 Ān, a shadow value must be associated with the n− 1 reservoirs,

where the storing capacity of the nth reservoir will not entirely be used (Lafforgue et al., 2008).

We also consider possible scarcity issues related to the storage side, but with respect to ocean seques-

tration instead of geological sequestration (Scenario SeqC and SeqX). In contrast to the scenarios AC and

AX , sequestration is determined not only by the scarcity of the atmospheric storing capacity but by the

difference between this scarcity and the scarcity of oceanic storing capacity:

A′(a) = λS − λW = λW
S , (38)

As explained in Section 3.2 and above, the difference between both scarcities increases until tcr, is

constant until ta, and then decreases until tcl, to zero, if sequestration unit costs are constant, or it directly

decreases to zero from tcr onwards if sequestration costs are convex, whereby λS(t) ≥ 0 and λW (t) ≥ 0 for

t ǫ (0, tcl). Note neither the storing capacity of the atmosphere nor that of the ocean is scarce by itself if the

ceiling is such that S̄ > S∞ so that S̄/ω > W∞. Nevertheless, scarcity arises if the inertia of the carbon cycle

to move carbon into the deep ocean and the decreasing oceanic buffer capacity result in an atmospheric peak

concentration with Sp > S̄. The benefit of ocean sequestration arises from overcoming this inertia and using

the oceanic buffer capacity. This can be understood by considering instantaneous equilibration between

atmospheric and oceanic carbon stocks without including oceanic buffer capacity (γ = ω = 1), implying

that both carbon stocks would be monotonically increasing to their steady state values (S∞ = W∞). If

the ceiling is binding with respect to the steady state values (S̄ < S∞), both costate variables are equal

(λS = λW ) and ocean sequestration is of no benefit, as it increases both stocks equally. Factoring in either

the inertia (γ < 1) or the oceanic buffer capacity (ω < 1) implies that ocean sequestration causes the

atmospheric carbon stock to increase by only γa or ωa, respectively. As a result, the difference between the

scarcities becomes positive and ocean sequestration is of benefit if A′(0) < λS − λW . With both the inertia

and the buffer capacity included, ocean sequestration causes the atmospheric carbon stock to increase by

only γωa so that the difference between the scarcities increases further.

Because the two-box model description includes the oceanic buffer capacity, it is able to demonstrate

that ocean sequestration does not only economically but also physically influence the amount of extraction.

In the two-box model, extraction at the ceiling is given by qSeq = γ(S̄ − ωW ), where W is influenced by

ocean sequestration. Therefore, Proposition 3 needs to be modified:

Proposition 6. When atmospheric carbon concentration is at the ceiling, extraction must be monotonically

decreasing at a faster rate if sequestration is used.
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Proof. From ṠW = 0 = q − (γ + γω)S̄ + γω(K0 − R(t)) follows that q̇
q+a

= −γω, whereas without

sequestration q̇
q
= −γω holds.

Proposition 6 implies that we observe a kink in the extraction path at the ceiling at the point in time when

extraction ends in Scenario SeqC and in Scenario SeqX given A′(0) > 0. For a given value of the resource

stock and therefore also the oceanic carbon stock at tcr (K0 − S̄ − R(tcr) = W (tcr)), the period at the

ceiling is shorter for Scenario SeqC and SeqX than for Scenario Ceil because from (33) follows that the

oceanic carbon stock is unique for all three scenarios at tcl. Consequently, the path from tcl onwards until

the switching point tb is the same for all three scenarios. However, as implied by Proposition 4 and 5, the

initial values at tcr are not unique for the three scenarios. In Scenario SeqC, the ceiling is approached earlier

and therefore with a higher resource stock and a lower oceanic carbon stock than in Scenario Ceil. If in

Scenario SeqX the ceiling is approached later than in Scenario Ceil, the resource stock is lower and the

oceanic carbon stock is higher, so that initial extraction at the ceiling is lower than in Scenario Ceil. Note,

even if the ceiling is reached at the same point in time or earlier than in Scenario Ceil, the oceanic carbon

stock can be higher due to positive sequestration. However, that would again imply lower initial extraction

at the ceiling, so that it seems more likely that in an optimal solution the ceiling is approached later than

in Scenario Ceil.

To illustrate the implications of the various scenarios, we provide a numerical example.18 Figure 1

shows the optimal paths for extraction, sequestration, total energy consumption by fossil fuels, and backstop

technology in the left column and the atmospheric carbon concentration in the right column for the scenarios

Ext, Ceil, SeqC, and SeqX . The parameter values are chosen so that assumptions 3 to 6 are fulfilled. In

the unconstrained Scenario Ext, atmospheric carbon stock approaches its peak concentration before energy

consumption switches to the backstop technology, whereby the ceiling is crossed twice. Accordingly, in

Scenario Ext, tcr and tcl, denote when the ceiling is crossed, whereas in the other scenarios they denote the

start and end of the ceiling period. In Scenario Ext, the amount of extraction at tcl is actually lower than

in the other scenarios. This can be seen from the shorter period between tExt
cl and tExt

b , compared to other

scenarios where this period is equal for Scenario Ceil, SeqC, and SeqX , as explained above. However, the

period at the ceiling varies between these three latter scenarios. In line with Proposition 5, the ceiling is

approached earlier in Scenario SeqC than in Scenario Ceil due to sequestration. Even though the ceiling

is left earlier in Scenario SeqC, the overall period at the ceiling is extended. Consequently, the effect of

approaching the ceiling earlier because of higher initial extraction overcompensates the faster decline in fossil

fuel energy consumption at the ceiling. For the chosen parameter values, the ceiling is reached later and left

18The utility function is U(q) = b1∗q−b2∗q2, the stock-dependent extraction cost function is c1−c2R, the ocean sequestration
cost function for Scenario SeqX is A(a) = ax ∗ a2 and for Scenario SeqC A(a) = ac ∗ a. The parameter values are b1 = 6,
b2 = 6/20, c1 = 6, c2 = 1/10, ax = ac = 2/10, cy = 5.6, γ = 1/10, ω = 1/10, ρ = 3/100, and the initial values are R0 = 50,
S0 = 20, and W0 = 200. The ceiling is S̄ = 45

28
S0 = 32.1429 where 280 ppm is the preindustrial atmospheric carbon stabilization

level and 450 ppm is a ceiling that could possibly be used to comply with the 2◦C temperature limit discussed above.
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Figure 1: Energy consumption and atmospheric carbon stock in scenarios Ext, Ceil, SeqC, and SeqX

earlier in Scenario SeqX than in Scenario Ceil because of continuous sequestration. Scenario SeqX has the

shortest period at the ceiling, Scenario SeqC the longest period. In both scenarios SeqC and SeqX , the

option of sequestration allows an path of energy consumption to be reached which looks more like the energy

consumption path in Scenario Ext. Note if the initial values S0 and W0 are chosen such that Assumption

4 is violated but such that S0 > ωW0 and Assumption 5 are still satisfied, the period until the ceiling is

reached shrinks and the path for atmospheric carbon concentration until the ceiling could be U-shaped.

It remains to briefly discuss the implications of the change in path of the oceanic carbon stock caused

by ocean sequestration. As explained above, the oceanic carbon stock W (tcl) is unique for the scenarios

Ceil, SeqX , and SeqC. Leaving the ceiling earlier with ocean sequestration implies that the oceanic carbon
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stock has increased faster than without ocean sequestration. Consequently, ocean sequestration influences

the rate of ocean acidification even though the total level of ocean acidification is not affected, as it follows

from the unaffected steady state values (S̄ > S∞). A ceiling for the oceanic carbon stock or a damage

function capturing the social costs of an increasing oceanic carbon stock could be included in the objective

function. Both of these possibilities would have a similar effect as the oceanic carbon stock is monotonically

increasing to its steady state value. Therefore, λW and, in turn λS , would be positive for t ǫ (0,∞) and

total fossil fuel consumption would shrink.19 The amount of ocean sequestration would also shrink or even

become zero in the period until tcl, as the tax difference decreases. After the ceiling has been left, the tax

difference would become negative, implying that it would be beneficial to “pump” carbon back from the

ocean to atmosphere (θ2 > 0). Furthermore, the positive costate variable λS for t → ∞ implies that fossil

fuels and the backstop technology would be used simultaneously from tb onwards.

4. Conclusion

In this paper I investigate the optimal role of carbon sequestration from a social planner’s perspective

while the atmospheric carbon concentration is constrained by a ceiling. In contrast to existing analyses, we

include stock-dependent extraction costs, describe the carbon cycle using a two-box model, assume carbon

sequestration costs to be convex, and consider oceanic instead of geological carbon storage.

The inclusion of stock-dependent extraction costs does not influence the optimal sequestration decision

as discussed in the literature. However, their inclusion can imply that not the entire stock of fossil resources

is extracted, as is shown by Dasgupta and Heal (e.g., 1979) and Tahvonen (1997). The description of the

carbon cycle using a two-box model allows the ongoing saturation of the ocean with anthropogenic carbon

to be taken into account. Consequently, extraction at the ceiling is not constant, as is the case with a

proportional decay description, but is monotonically decreasing. This implies that the simultaneous use of

fossil fuels and a backstop technology could start at some point at the ceiling which is not possible with the

proportional decay description without also using sequestration. The non renewable description of the carbon

cycle provided by the two-box model implies positive atmospheric and oceanic carbon stock stabilization

values that have to be larger in sum than the initial values as a consequence of the anthropogenic release of

carbon into the cycle. Therefore, it is possible that the ceiling limits total carbon accumulation in the cycle,

where with the proportional decay description, the ceiling is a temporary problem per definition. When the

ceiling is permanently binding in the two-box model, the stock of fossil resources left in the ground must

increase, compared to a when a ceiling is only temporarily binding regardless of whether extraction costs

are stock-dependent or not.

19In the case of a damage function instead of a ceiling the steady state values for λS and λW are: λS(∞) =
D′(W )γ

ρ(γ+ρ+γω)
and

λW (∞) =
D′(W )(γ+ρ)
ρ(γ+ρ+γω)

.

22



Convex carbon sequestration costs imply that sequestration is used in a continuous manner, increasing

on the path towards the ceiling and decreasing at the ceiling. Constant sequestration costs imply that

sequestration is used in a discontinuous manner, jumping from zero to its maximum value and decreasing at

the ceiling (Chakravorty et al., 2006; Lafforgue et al., 2008). Both cost assumptions result in a total energy

consumption path that looks more like the one observed in the unconstrained solution. However, the path

resulting from convex sequestration costs seems to be more realistic with respect to physical and investment

requirements related to the implementation of such a technology. This is confirmed by simulation results

that project an increasing share of carbon sequestration for various temperature stabilization targets (e.g.,

IEA, 2010). Furthermore, constant sequestration costs imply that in an optimal solution, the atmospheric

ceiling will be approached earlier if sequestration is used at the ceiling. Convex sequestration also allows the

atmospheric ceiling to be approached later. Our ability to profoundly determine a ceiling on atmospheric

carbon concentration that can be regarded as safe with respect to climate change is restricted by our still

limited understanding of the earth’s climate system, in particular with respect to tipping points. Accordingly,

at the meeting of the parties in Cancun, it was recognized that the limit for temperature increase to 2◦C need

to revised to a limit of 1.5◦C because of new scientific knowledge (UNFCCC, 2010). Therefore, technologies

allowing society to approach an agreed ceiling later and to gain time to learn more about the consequences

of climate change can be regarded as preferable. Results based on linear sequestration costs, suggest that

carbon sequestration would not be a recommend option to deal with the atmospheric carbon accumulation

problem, whereas results based on convex sequestration costs suggest that such technology could be an

important option.

Ocean sequestration and therefore oceanic carbon storage allows the kinetic constraints of natural oceanic

carbon uptake to be overcome. The atmospheric carbon accumulation problem is crucially influenced by

the inertia of the global and in particular the marine carbon cycle in balancing anthropogenic disturbances

to the carbon cycle. About 80 percent of the anthropogenic carbon emitted to the atmosphere is expected

to be taken up by the ocean on timescales of several hundred years (e.g., Archer et al., 1997; Körtzinger

and Wallace, 2002; Sarmiento and Gruber, 2006). Ocean sequestration takes advantage of the oceanic buffer

capacity and the slow turnover speed of the natural adjustment process. Therefore, the optimal amount of

ocean sequestration is determined by the difference between the scarcities of the atmospheric carbon storing

capacity and of the oceanic carbon storing capacity. Whereas the former results from the temporarily

binding ceiling, the latter results from its negative feedback effect on natural oceanic carbon uptake. Ocean

sequestration contributes to the saturation of the ocean with anthropogenic carbon, implying that emissions

released into the atmosphere at the ceiling have to decline at a faster rate than without ocean sequestration.

If the oceanic carbon storing capacity becomes scarce by itself, e.g., by accounting for ocean acidification,

ocean sequestration is less beneficial. Furthermore, after the ceiling has been left, the optimal amount of

fossil fuel extraction would no longer be limited by the atmospheric carbon stock but rather by the ongoing
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ocean acidification. With respect to ocean acidification, geological storage would be more beneficial, as it

allows overall atmospheric and oceanic stabilization levels to be decreased, whereas ocean sequestration does

not. Apart from ocean acidification, geological storage does not affect the buffer capacity of the ocean, so

that, if costs for geological and oceanic carbon sequestration are equal, the geological storage capacity will

be fully used, irrespective of whether simultaneous use is implied by convex sequestration costs or successive

use is implied by linear sequestration costs. However, if carbon sequestration is applied on a large scale, it

will be probably more expensive to inject carbon into suitable geological storage sites which each require

specific investments with respect to pipelines and injection facilities, than to inject carbon into the ocean.

Therefore, the interesting case for future research arises from considering various storage options that can

be ranked according to the associated injection costs but also according to the associated environmental

costs, which would probably result in different ranking orders.
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A. Necessary and sufficient optimality conditions

For the three control variable constraints, g1(q, a, y) = −q ≤ 0, g2(q, a, y) = −a ≤ 0, and g3(q, a, y) = −y ≤

0, and the state variable constraint, h(S(t)) = S(t) − S̄ ≤ 0, the constraint qualification is fulfilled if the

matrix

m =

















∂g1
∂q

∂g1
∂a

∂g1
∂y

g1 0 0 0

∂g2
∂q

∂g2
∂a

∂g2
∂y

0 g2 0 0

∂g3
∂q

∂g3
∂a

∂g3
∂y

0 0 g3 0

∂ ∂h

∂t

∂q

∂ ∂h

∂t

∂a

∂ ∂h

∂t

∂y
0 0 0 h

















(A.1)

has the full row rank (Feichtinger and Hartl, 1986, p.165, 6.17), which can be seen to be fulfilled from

m =

















−1 0 0 −q 0 0 0

0 −1 0 0 −a 0 0

0 0 −1 0 0 −y 0

1 0 0 0 0 0 S(t)− S̄

















(A.2)

The concavity of the maximized Hamiltonian can be shown by proving that the Hessian Matrix of the

Hamiltonian is at least negative semi-definite (Feichtinger and Hartl, 1986, p.37, Remark 2.4). To do so,

we use the ReduxW system, where the oceanic carbon stock is dropped. The corresponding Current Value

Hamiltonian is Hc = U(q + a + y) − A(a) − C(R)(q + a) − cyy + λRṘ + λSṠ, so that the corresponding

Hessian matrix is:


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


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
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HSS HSR HSq HSa HSy
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HyS HyR Hyq Hya Hyy


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
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


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0 −C′′(R)(q + a) −C′(R) −C′(R) 0
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
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













. (A.3)

The negative semi definiteness can easily be seen by checking whether all the leading principal minors are

zero.

The regularity of the Hamiltonian follows from the strict concavity of the Hamiltonian in the control

variables (Feichtinger and Hartl, 1986, p.167). If the optimization problem is restricted to the control

variables q and a and sequestration costs are defined by Case X in Assumption 6, this strict concavity is
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fulfilled:

Det





Hqq Hqa

Haq Haa



 = −U ′′A′′ > 0. (A.4)

If sequestration costs are defined by Case C in Assumption 6 and/or the backstop technology is included,

we see from (A.4) and the lower right 3x3 matrix in the Hesse matrix (A.3) that the regularity condition is

not fulfilled because the Hamiltonian is not strictly concave in the control variables anymore.
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