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1 Introduction and Existing Literature

Since the onset of the global �nancial crisis (GFC) in 2007/08, the analysis
of network structures formed by interbank liabilities has received increasing
attention. Considering an ensemble of �nancial institutions, individual banks
are connected to each other through some of their activities (usually credit
�ows) and the bilateral exposures can be mapped into a credit network. Such
a perspective is useful in order to study the knock-on e�ects on other banks
due to disruptions of the system caused by the failure of individual nodes
(e.g. insolvency of one bank). A new strand of literature has started to
construct �nancial networks based on empirical data available at supervisory
authorities or hypothetical network structures to investigate the contagious
e�ects of failures of single banks.1 A basic �nding of network theory is that
the topology of a network is important for its stability, with the interbank
network obviously being no exception.2 In this regard, the understanding of
the structure and functioning of complex networks has advanced signi�cantly
in recent years.

In this paper, we focus on one of the most prominent network charac-
teristics, namely the degree distribution, where the degree is the number of
(incoming/outgoing) connections per node. Even though the degree distri-
bution does not provide su�cient information for all facets of the structure
of the network (Alderson and Li, 2007), it is often considered as one of
the de�ning characteristics of di�erent network types. For example, net-
works with random link formation (Erdös and Renyi, 1959, or ER random
networks) display Poisson degree distributions, i.e. most nodes have degrees
within a relatively narrow range. In contrast, many real-world networks have
been reported to display fat-tailed degree distributions: most nodes have a
very small degree, but the tail contains nodes with substantially larger de-
grees (cf. Clauset et al., 2009). This feature is shared by the important
class known as scale-free (SF) networks, in which the fraction of nodes with
degree k is proportional to k−α, where α is the so-called scaling parameter.
The term scale-free indicates that there is no typical scale of the degrees, i.e.
the mean may not be representative. These networks received considerable
attention in the literature due to a number of interesting properties (cf. Cal-
darelli, 2007). One important feature of scale-free networks is that they can
be described as robust-yet-fragile,3 indicating that random disturbances are
easily absorbed (robust) whereas targeted attacks on the most central nodes
may lead to a breakdown of the entire network (fragile). Quite interestingly,

1See e.g. Upper and Worms (2004), Nier et al. (2007), and Gai et al. (2011).
2See Haldane and May (2011) and Albert et al. (2000).
3See Albert et al. (2000).
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many interbank networks have been reported to resemble scale-free networks
(cf. Boss et al., 2004, Soramäki et al., 2006, De Masi et al., 2006, and Iori
et al., 2008). If the network of credit relationships had such a structure,
this would carry important policy implications. For instance, such a network
might experience long stable periods, during which disruptions are con�ned
to peripherical banks and can be absorbed easily within the entire system.
However, such periods could be a misleading indicator of the overall stability
of the system as problems a�ecting the most central nodes could suddenly
cause a breakdown of the entire network, cf. Haldane (2009).

The distribution of network degrees is just one example among many
phenomena in the natural sciences as well as from the socio-economic sphere
that have been claimed to follow a scaling law (power-law or Pareto-law).
Other well-known examples include: Zipf's law for the city size distribution
(Gabaix, 1999), the distribution of �rm sizes (Axtell, 2001), the size dis-
tribution of innovations (Silverberg and Verspagen, 2007), the distribution
of output growth-rates (Fagiolo et al., 2008) or the distribution of large as-
set returns (Mandelbrot, 1963, Lau et al., 1990, and Jansen and de Vries,
1991). While these examples appear to be supported by empirical evidence
and meanwhile count as stylized facts, a variety of other �ndings of power-
laws seem more questionable. It appears from a number of recent reviews
of power-law methodology and power-law �ndings (cf. Avnir et al., 1998,
Stumpf and Porter, 2012) that there had been an over-emphasis on scaling
laws and often too optimistic interpretation of statistical �ndings in the lit-
erature of the natural sciences. For instance, in a meta-study of power-laws
reported in publications in the main physics outlet Physical Review between
1990 and 1996, Avnir et al. (1998) found that most claims of power-laws (aka
scaling or fractal behavior) had a very modest statistical footing. As they say
`... the scaling range of experimentally declared fractality is extremely lim-
ited, centered around 1.3 orders of magnitude.' In terms of statistics jargon
this means that the more typical declaration of a power-law in these publi-
cations is based on a partially linear slope in a relatively small intermediate
range of the empirical cumulative distribution of some observable.

The power-law exponent (like the ones reported for the degree distri-
bution) is typically obtained by a linear regression in a log-log plot of the
cumulative distribution. Obviously, this approach su�ers from a number
of shortcomings: (i) even if the hypothetical data-generating process is a
Pareto distribution, this log-log �t would not be an e�cient way to extract
the parameter of the underlying distribution.4 It is actually a method that is

4See Goldstein et al. (2004). Gabaix and Ibragimov (2011) improve the regression
method by shifting the rank observations.
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de�nitely inferior to maximum likelihood (which is easy to implement), and
results are hard to interpret as, due to the dependency of observations in the
log-log plot of the cumulative distribution, the statistical properties of this
estimator are not straightforward, (ii) the implicit censoring of the data that
is exerted by selecting a scaling range makes it easy to deceive oneself. Many
distributions might actually have some intermediate range in their `shoul-
ders' where their cdf looks appropriately linear. But their remaining support
(small and large realizations) might display a completely di�erent behavior.
Since power-laws in the natural sciences are thought to be interesting if they
extent over several orders of magnitude, it is unclear what the interpretation
of such an intermediate power-law approximation would be.

Statistical extreme value theory (EVT) provides yet another perspective
on power-law behavior. The basic result of this branch of statistics is a
complete characterization of the limiting distributions of extremes (maxi-
mum or minimum) of time series of iid observations (where results for the
iid case have been generalized for dependent processes under relatively mild
conditions, cf. Leadbetter, 1983, and Reiss and Thomas, 2007, for details).
According to EVT, the appropriately scaled minimum or maximum of a se-
ries of observations converges in distribution to one of only three functional
forms: the Fréchét, Gumbel or inverted Weibull distribution. Since extremes
are by de�nition very rare, it is often even more relevant, that the tail of a
distribution converges in distribution in a similar way to one of three adjoint
functional forms. Namely, the outer part approaches either a power-law de-
cay, an exponential decay or a decay towards a �xed endpoint for the three
types of extremal behavior, respectively. Power-law behavior is, therefore, a
very general form of limiting behavior for the large realizations of a stochastic
process. EVT has originally been developed for continuous distribution func-
tion. Since degree distributions are discrete (degrees being integer numbers),
its is worthwhile to note that corresponding limit laws for discrete variables
are available as well, cf. Anderson (1970). In our context this might imply
that very large realizations of the degree distribution could still decay like a
power-law even if the bulk of the distribution does not appear to follow such
a distribution (and the implications for the fragility of the system might be
similar as for `true' scale-free networks). It is important to emphasize that
both the limiting behavior of extremes and tails are stable under aggregation.
Hence, data at di�erent levels of (time-) aggregation should obey the same
extreme value and tail behavior.

One reason for the `popularity' of power-laws in the natural sciences is
that they are often the signatures of relatively simple and robust generat-
ing mechanisms that might apply to a variety of phenomena. In the case
of networks, a power-law distribution of degrees is the imprint of so-called
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scale-free networks. Reported power-laws for interbank networks have been
within a relatively narrow range around 2.3 both for the in- and out-degree
distributions (see e.g. Boss et al., 2004, Soramäki et al., 2006, and De Masi
et al., 2006), even though most papers lack a thorough statistical analysis
of the issue, with Bech and Atalay (2010) being a notable exception. If
these �ndings were robust, the known generating mechanisms for scale-free
networks would be strong candidates as mechanisms for the formation of in-
terbank links. Furthermore, the well-known reactions of scale-free networks
to disturbances would be of immediate concern for macro-prudential regu-
lation. Thus, taking into account the relevance of such topological features,
and the documented over-emphasis on power-law behavior, a more rigorous
statistical analysis of the distributional properties of interbank network data
should be worthwhile. Similar approaches have revealed that numerous pre-
vious claims of power-law behavior were not supported by the data (Stumpf
and Porter, 2012).

In this paper, we consider interbank networks based on the Italian e-MID
(electronic market for interbank deposits) data for overnight loans during
the period 1999-2010. Our main focus is to �t a set of di�erent candidate
distributions to the degrees for di�erent time horizons. Using daily data
over the period 1999-2002, De Masi et al. (2006) reported power-laws for
the distribution of in- and out-degrees, with tail parameters 2.7 and 2.15,
respectively. Finger et al. (2012) have shown recently that the networks'
properties depend on the aggregation period.5 We will, therefore, not con-
�ne our analysis to daily data (the basic frequency of our data set), but also
look at the distribution of in- and out-degrees for networks constructed on
the base of aggregated data over longer horizons. Quite surprisingly in view
of the previous literature, we �nd hardly any support in favor of previously
reported power-laws: at the daily level the degrees are usually �t best by
negative Binomial distributions, while the power-law may provide the best
�t for the tail data. However, we typically �nd very large power-law expo-
nents (with values as large as 7), i.e. levels where the power-law is virtually
indistinguishable from exponential decay. At the quarterly level, Weibull,
Gamma, and Exponential distributions tend to provide comparable �ts for
the complete degree distribution, while the tails again tend to display expo-
nential decay. We �nd comparable results when investigating the distribution
of the number of transactions, even though in this case the tails of the quar-
terly variables are somewhat fatter. However, the Log-normal distribution

5Since we cannot easily observe the state of a hypothesized network of interbank links
at a given point in time, some data aggregation is necessary. Usually, for time-aggregated
data a link is assumed to exist between two banks, if there has been a trade at any time
during the aggregation period.
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typically outperforms the power-law. Overall these �ndings indicate that the
power-law is typically a poor description of the data, implying that preferen-
tial attachment and other generating mechanisms for scale-free networks are
unsuitable explanatory mechanisms for the structure of the Italian interbank
network. Moreover, the networks contain a substantial level of asymmetry,
due to the low correlation between in- and out-degrees. Additionally, we �nd
that the two variables do not follow identical distributions in general.

The remainder of this paper is structured as follows: Section 2 gives
a short introduction into (interbank) networks, section 3 brie�y introduces
the Italian e-MID trading system and gives an overview of the data set we
have access to. Section 4 describes our �ndings and section 5 concludes and
discusses the relevance of these �ndings for future research.

2 Networks

A network consists of a set of N nodes that are connected by M edges
(links). Taking each bank as a node and the interbank positions between
them as links, the interbank network can be represented as a square matrix
of dimension N×N (data matrix, denoted D). An element dij of this matrix
represents a gross interbank claim, the total value of credit extended by bank
i to bank j within a certain period. The size of dij can thus be seen as a
measure of link intensity. Row (column) i shows bank i's interbank claims
(liabilities) towards all other banks. The diagonal elements dii are zero, since
a bank will not trade with itself.6 O�-diagonal elements are positive in the
presence of a link and zero otherwise.

Interbank data usually give rise to directed, sparse and valued networks.7

However, much of the extant network research ignores the last aspect by
focusing on binary adjacency matrices only. An adjacency matrix A contains
elements aij equal to 1, if there is a directed link from bank i to j and 0
otherwise. Since the network is directed, both A and D are asymmetric in
general. In this paper, we also take into account valued information by using
both the raw data matrix as well as a matrix containing the number of trades
between banks, denoted as T. In some cases it is also useful to work with the
undirected version of the adjacency matrices, Au, where auij = max(aij, aji).

As usual, some data aggregation is necessary to represent the system as a

6This is of course only true when taking banks as consolidated entities.
7Directed means that di,j 6= dj,i in general. Sparse means that at any point in time the

number of links is only a small fraction of the N(N −1) possible links. Valued means that
interbank claims are reported in monetary values as opposed to 1 or 0 in the presence or
absence of a claim, respectively.
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network. In the following, we de�ne interbank networks by aggregating over
daily as well as quarterly lending activity.

3 The Italian Interbank Market (e-MID)

The Italian electronic market for interbank deposits (e-MID) is a screen-
based platform for trading of unsecured money-market deposits in Euros, US-
Dollars, Pound Sterling, and Zloty operating in Milan through e-MID SpA.8

The market is fully centralized and very liquid; in 2006 e-MID accounted for
17% of total turnover in the unsecured money market in the Euro area, see
European Central Bank (2007). Average daily trading volumes were 24.2 bn
Euro in 2006, 22.4 bn Euro in 2007 and only 14 bn Euro in 2008. We should
mention that researchers from the European Central Bank have repeatedly
stated that the e-MID data is representative for the interbank overnight
activity, cf. Beaupain and Durré (2012).

Detailed descriptions of the market and the corresponding network prop-
erties can be found in Finger et al. (2012).9 In this paper we used all regis-
tered trades in Euro in the period from January 1999 to December 2010. For
each trade we know the banks' ID numbers (not the names), their relative
position (aggressor and quoter), the maturity and the transaction type (buy
or sell). The majority of trades is conducted overnight and due to the global
�nancial crisis (GFC) markets for longer maturities essentially dried up. We
will focus on all overnight trades conducted on the platform, leaving a total
number of 1,317,679 trades. If not stated otherwise, the reported results are
based on trades conducted between Italian banks only, reducing the total
number of trades to 1,215,759.

4 Results

In this section we present empirical results on the dynamics and distribution
of the number of links (degrees) and the number of transactions (ntrans) of
individual institutions. The degree of a node gives the total number of links
that a bank has with all other banks and can thus be seen as a measure for
the importance of individual nodes. Undirected networks imply symmetric
adjacency matrices. In this case bank i's total degree ki is simply the number

8The vast majority of trades (roughly 95%) is conducted in Euro.
9See also the e-MID website http://www.e-mid.it/.
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of relationships bank i has with other banks, i.e.

ktotali =
∑
j 6=i

auij. (1)

For directed networks, we di�erentiate between incoming links (bank i bor-
rows money from other banks) and outgoing links (i lends money to other
banks), and de�ne the in- and out-degree of i (kini and kouti ) as

kini =
∑
j 6=i

aji

kouti =
∑
j 6=i

aij,
(2)

respectively. Note that our networks contain only banks with at least one
(directed) link. In this way, the total degree of a sample bank is always
at least equal to one, while it may be the case that either the in- or out-
degree equals zero for a particular bank. Since we ignore zero values in the
distribution �tting approach, this a�ects the number of observations for the
di�erent variables.

For the number of transactions, we use similar de�nitions based on the
T matrix, with each element ti,j giving the number of trades with credit
extended from bank i to bank j. To be precise, we calculate the number of
in-/out-transactions as

nini =
∑
j 6=i

tji

nouti =
∑
j 6=i

tij.
(3)

Additionally, we analyze the total number of transactions, for simplicity de-
�ned as the sum of in- and out-transactions

ntotali = nini + nouti . (4)

4.1 Dynamics of the Degrees and Number of Transac-

tions

Before investigating the distribution of the variables under study, we provide
a brief overview of their dynamics over time, restricting ourselves to quarterly
data here. Figure 1 shows the in-/out-degrees (left) from the directed net-
works and the total degrees from the undirected networks (right). The upper
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left panel shows the mean and median in-degree and out-degrees over time.10

Clearly, the mean values are decreasing over time, and so does the median
in-degree which is mostly very close to the mean value. For both series we
�nd a signi�cant structural break after quarter 10. In contrast, the median
out-degree �uctuated around an average value of roughly 17 over most of the
sample period, but with a signi�cant structural break after quarter 39 due
to the GFC. These values are considerably smaller than the values for the
in-degree, pointing towards a substantial level of skewness in the out-degree
distribution. Thus, the distributions of in- and out-degrees are likely to be
not identical. The lower left panel shows the relative mean and median de-
gree over time, i.e. the values in the upper panel standardized by the number
of nodes active in each quarter. We see that the negative trend in the upper
panel is mostly driven by the negative trend in the number of active banks.
Thus, the standardization appears to make the in-degrees of di�erent quar-
ters comparable. This is less so for the median out-degree, which is far more
volatile over the sample period.11 For the sake of completeness, the corre-
sponding values for the degrees from the undirected networks are shown on
the right-hand side. Both for the absolute and relative values the mean and
median values are very similar, except for the beginning of the sample period.
This is driven by the high level of asymmetry in the out-degree distribution
for the �rst half of the sample, which appears to decrease later on.

What does the evidence on the di�erences between the in- and out-degree
distributions imply? Given that many studies on interbank markets work
with undirected networks, these studies entail the implicit assumption of a
high correlation between in- and out-degrees of individual banks. The left
panel of Figure 2 shows a scatter-plot of in-degree against out-degree for
Italian banks, showing a small correlation of .0899 for all observations. For
single quarters, we �nd that the correlation between these measures may be
very small, at times even negative. Thus, banks with a high in-degree do not
necessarily have a high out-degree and vice versa. The directed version of
the network contains a considerable amount of information. The right panel
of Figure 2 indeed shows a relatively monotonic decline of the correlation
over time. This implies that banks have become more `specialized', i.e. in
any quarter they appear to enter the market predominantly as lenders or
borrowers.

For the number of transactions, Figure 3 shows the dynamics of the mean
and median in-/out-ntrans (left) and the total ntrans (right). The upper left

10Note that the mean in- and out-degree are identical by de�nition.
11Interestingly, after standardizing the degrees, we �nd structural breaks in all three

time series close to quarter 39, i.e. around the GFC.
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Figure 1: Mean and median degree over time. Left: in- and out-degree.
Right: total degree. Top: absolute levels. Bottom: standardized
values (divided by the number of active banks per quarter).
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Figure 3: Mean and median number of transactions over time. Left: Di-
rected Network. Right: Undirected Network. Top: absolute lev-
els. Bottom: standardized values (divided by the number of active
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11



panel shows that the average number of transactions per bank is close to
200 during most quarters, but signi�cantly decreases during and after the
GFC. For both variables, the median values are substantially smaller than
the mean, which hints towards a high level of skewness. Again, substantial
di�erences in the median values indicate that the in- and out-variables are
unlikely to follow identical distributions. The bottom left panel shows the
standardized mean and median values. Quite interestingly, the somewhat
negative trend of the variables vanishes, except for the GFC period. The same
observation applies to the total number of transactions on the right panels.
The results concerning the correlation between in- and out-transactions are
comparable to those for the degrees (not reported).

4.2 The Degree Distributions

Due to the change in the size of the Italian interbank network, and the de-
tection of two candidates for signi�cant structural breaks during our sample
period, we split the data set into three periods: Period 1 covers quarters
1-10, period 2 covers quarters 11-39, and period 3 covers the remaining quar-
ters 40-48.12 Assuming that the realizations of single days (quarters) are iid
draws (or weakly dependent ones) from the same underlying data generating
process, allows us to pool the data of the three subperiods into larger samples
for the in-, out-, and total degrees (ntrans) of active banks, respectively. We
use both daily and quarterly aggregates, i.e. construct variables that count
the number of unique counterparties (degree) and total number of transac-
tions (ntrans) for each bank within each day and quarter, respectively.13 For
the daily (quarterly) data this amounts to a total of 96,892 (1,780), 188,582
(3,369), and 41,775 (843) pooled observations for the three periods, respec-
tively. For the sake of completeness, we also show the results when pooling
all observations for the three time periods (1-3) for each degree measure.
We should stress that pooling observations from several periods is crucially
necessary in order to obtain reliable parameter estimates, in particular for
daily data. We will elaborate on this issue in more detail in the next section.

As a �rst step, we compare the in- and out-degree distributions and check
whether they could be realizations from the same underlying distribution.
Figure 4 shows the histograms of the in-, out-, and total degrees for the
di�erent time-periods using quarterly data. We see that the histograms look
very di�erent when comparing in- and out-degrees for each sample period.

12Note that the �rst subsample roughly coincides with the data set used by De Masi et
al. (2006).

13In Appendix B we present a similar analysis for the distribution of transaction volumes
of individual institutions.

12



We should note that a substantial fraction of observations equals zero, both
for in- and out-degrees. While the in-degree histograms appear to have a
certain hump-shape, the out-degrees look more like a slowly decaying function
with monotonic decline of probability from left to right. Furthermore, the
L-shaped form of the out-degree distributions appears to be more stable over
time, even though the scale on the x-axis changes substantially. Individual
Kolmogorov-Smirnov (KS) tests provide further evidence against the equality
of in- and out-degree distributions for all sample periods. The KS test allows
to check whether two variables follow the same probability distribution, but
also whether one variable follows a certain speci�c distribution. In our case,
the KS test statistic is calculated as

KSn = sup
x
|F1,n(x)− F2,n(x)|, (5)

where supx denotes the supremum of all possible values, while F1,n(·) and
F2,n(·) are the empirical distribution functions of the sample of in-degrees
and out-degrees, respectively. At all sensible signi�cance levels, we have
to reject the null hypothesis of the equality of both distributions. Similar
observations can be made when pooling all observations across the three
subperiods, see Figure 5.

Figure 6 shows the complementary cumulative distribution functions (ccdf)
for the quarterly degree measures for all sample periods on a log-log scale, the
typical way to represent data when suspecting power-law decay. Note that
for a power-law, these ccdfs would be straight lines, which upon inspection
seems unlikely to provide a good approximation to any of our subsamples,
even for the tail regions. Again the distributions of in- and out-degrees look
quite di�erent in general, even though the shapes of the tail regions appear
to be more homogeneous than what one might have expected after inspection
of the raw data in Figures 4 and 5. Similar arguments hold for the distribu-
tion of total degrees, which has a somewhat similar shape as the in-degree
distribution. For this reason, we will mostly restrict ourselves to comment on
the results for the in- and out-degrees, respectively. We also show the ccdfs
for the daily observations in Figure 7. Again, it is hard to detect a linear
decay for most samples, at least not over several orders of magnitude.

4.2.1 Distribution Fitting Approach

Our basic approach is to �t a number of candidate distributions in order to
investigate which distribution describes the data `best' in a statistical sense.
We should note that, similar to the approach in Stumpf and Ingram (2005),
we use both discrete and continuous candidate distributions, implying that
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Figure 4: Quarterly data, degree. Histograms for in-degree (left), out-
degree (center), and total degree (right) for Period 1, 2, and 3.
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Figure 5: Quarterly data, degree. Histograms for in-degree (left), out-
degree (center), and total degree (right) using all observations.
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functions (ccdf) in-degree (top), out-degree (center), and total
degree (bottom) for all time periods on a log-log scale.
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for the latter we treat the degrees as continuous variables. The candidate
distributions, always �tted using maximum likelihood (ML), are:

- the Exponential distribution, with parameter λ > 0 (rate),

- the Gamma distribution, with parameters k > 0 (shape) and θ > 0
(scale),

- the Geometric distribution, with probability parameter p ∈ [0, 1],

- the Log-normal distribution, with parameters µ (scale) and σ > 0
(shape),

- the negative Binomial distribution, with parameters r > 0 (number of
failures) and p ∈ [0, 1] (success probability),

- the Poisson distribution, with parameter λ > 0,

- the discrete power-law or Pareto distribution, with parameters xm > 0
(scale) and α > 0 (shape),

- the Weibull or stretched exponential distribution, with parameters λ >
0 (scale) and k > 0 (shape).

We should note that a large part of the literature focuses on �tting the
power-law only, in particular when the ccdfs have an apparently linear shape.
Given that this is not the case here, we test a number of alternative distri-
butions to �nd the distributions that �t the data best. Nevertheless, even
though the power-law might not be a good description of the complete distri-
bution, it could still provide a good �t of the (upper) tail region. Therefore,
we conducted two sets of estimations of the above distributions for each sam-
ple: �rst, we �tted the complete distribution using all entries of our samples.
Here we should stress, that several of the distributions have strictly positive
support, while the others also allow for the occurrence of zero links. For the
sake of consistency we will therefore only use non-zero values for the degree
and ntrans variables in the following.14 This means, for some distribution
functions, we are using truncated variables in general (both for the complete

14This is important, since we cannot replicate the large number of zero values based on
these distributions that we observe in the empirical data. Ignoring zeros reduces the num-
ber of quarterly observations to 1,742, 3,271, and 788 for the in-variables, and 1,450, 2,733,
and 663 for the out-variables, respectively. For the daily data this leaves 70,584, 133,280,
and 28,093 for the in-variables, and 39,619, 83,723, and 17,961 for the out-variables, re-
spectively. The number of observations for the total degree and ntrans variables remain
una�ected, since only active banks are in the sample.
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and tail observations) and need to adjust the ML estimators for these dis-
tributions accordingly, cf. Appendix A.1. In a second step, we explicitly
�tted three of the eight candidate distributions, namely the Exponential, the
Log-normal, and the power-law, to a certain upper tail region for each period
and variable (the other candidates would obviously make little sense as tail
distributions). There are di�erent possibilities to identify the `optimal' tail
region. Here we employ the approach of Clauset et al. (2009), which has
been demonstrated to yield reliable estimates of both power-law parameters
for certain distributions converging to Paretian tail behavior. The basic idea
of this approach is to �nd the optimal tail parameter for all possible cuto�
points using maximum likelihood, where the optimal xm is the one corre-
sponding to the lowest KS statistic. Details can be found in Appendix A.2.15

The tail region is then de�ned by the scale parameter xm, and the other
distributions are �tted to all observations where x ≥ xm. Note that this
approach gives an obvious advantage to the �t of the power-law in the `tail'
region. Quite surprisingly, however, in many cases the power-law is not the
best description of the data tailored in this way as we will see below.

In these goodness-of-�ts (GOF) experiments, we �rst estimate the pa-
rameters for each candidate distribution, both for the complete data set and
the upper tail region, respectively, using ML. Using these parameters, we
calculate the KS test-statistic for each candidate distribution and take the
one with the lowest value as the `best' �t of the respective data.16 As a last
step, we evaluate the GOF of this candidate distribution based on the KS
test statistic. Given that the critical values of the KS distribution are only
valid for known distributions (i.e. without estimating parameters), we have
to perform individual Monte-Carlo exercises.17 In these exercises, we ran-
domly sample many degree sequences from the best �tting distributions with
their estimated parameter values and then calculate the KS test statistic of
these synthetic data sets. The reported p-values count the relative fraction of
observations larger than the observed ones, such that low p-values (say 5%)
indicate that the pertinent distribution can be rejected. We should stress
that we carry out this analysis only for the best �tting distribution, since the

15There exist a number of alternative approaches in statistical extreme value theory
for determining the optimal tail size. The approaches by Danielsson et al. (2001) and
Drees and Kaufmann (1998) yielded results very similar to those reported in the text. We
also checked certain �xed thresholds for identifying the tail region. The results remain
qualitatively the same as long as the chosen upper quantile is reasonably large.

16In principle, we could also use likelihood-based criteria, e.g. AIC or BIC. However,
Clauset et al. (2009) provide some evidence that the KS statistic is preferable as it is more
robust to statistical �uctuations.

17See Clauset et al. (2009) and Stumpf et al. (2005) for similar approaches.
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remaining ones have already been found to be inferior under the KS criterion.
Details on the Monte-Carlo design can be found in Appendix A.3.

In the following we will use this approach to investigate the distribution of
degrees and number of transactions for both daily and quarterly aggregates.
Already at this point we should stress that the GOF tests mostly indicate that
the distributions have to be rejected at traditional levels of signi�cance for
the complete samples, while the �ts to the tail tend to perform better. This
�nding is, however, strongly driven by the signi�cantly smaller number of
observations for the tail data, which yields relatively large and more volatile
KS statistics compared to the complete distributions.

4.2.2 Daily Data

We start our analysis with the daily degree data for which earlier studies
have reported power-laws (De Masi et al., 2006, and Iori et al., 2008). Before
turning to the results, we need to stress several complicating issues arising
from network data in general, and our data in particular. For example,
Stumpf and Porter (2012) note that `[a]s a rule of thumb, a candidate power-
law should exhibit an approximately linear relationship on a log-log plot over
at least two orders of magnitude in both the x and y axes. This criterion
rules out many data sets, including just about all biological networks'. In this
sense, �nite and possibly very small network sizes make it hard to provide
evidence for scale-free networks (Avnir et al., 1998, and Clauset et al., 2009).

For our data, Figure 8 shows the maximum in- and out-degrees for the
individual days over time. We see that the criterion of Stumpf and Porter
(2012) is typically violated. Thus, it should be hard to �nd evidence in favor
of the power-law hypothesis for the complete distributions. Additionally, the
number of observations in the `tail' of the data for a single day becomes
very small leading to large �uctuations of estimates across days and large
error bands of single estimates. These issues highlight the importance of
applying rigorous statistical methods to identify the best �tting distributions,
i.e. simply identifying a linear slope of the ccdf on a log-log scale might easily
be misleading. Similar remarks also apply for the daily ntrans variables (see
below), while quarterly data are typically slightly less problematic.

To highlight our previous comments, Figures 9 and 10 show the distri-
bution of the estimated daily power-law parameters for the complete and
tail observations, respectively, for all sample days. For the complete daily
samples, the results are very stable over time and across types of degrees,
cf. Figure 9. In fact, we will see that this stability tends to carry over to
the complete distributions of the aggregated data as well. In contrast, there
is a substantial level of heterogeneity for the power-law exponent of the tail
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Figure 8: Daily data. Maximum in- and out-degrees over time.
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the complete distributions, in-, out- and total degree, respectively.
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Figure 11: Daily data, degree. Total number of observations (complete)
and number of tail observations for out-degree.

observations for the individual days, cf. Figure 10. Thus, we cannot con�rm
previously reported �ndings of `typical' tail parameters between 2 and 3 for
any of the degree variables.18 While numerous observations lie within this
range, for many days we �nd substantially larger values, at times as large
as 7.19 Apparently, the daily tail data are too noisy to identify a `typical'
tail parameter, cf. Figure 11.20 The mismatch between the narrow range of
values obtained for the complete data set of single days and the broad range
of estimates for their tail might also indicate that the former are mainly
determined by the more central part of the distribution.

Since data for single days are too scarce to allow reliable parameter es-
timation, pooling observations over longer horizons might be advisable to
obtain better estimates. This, of course, requires the assumption of daily
data being drawn independently from the same underlying distribution, or
only with weak dependence of adjacent observations. While it is not straight-
forward to check this assumption for complete daily ensembles (as opposed

18The results are very similar when focusing on the individual period 1-3 as de�ned
before.

19We have set 7 as the upper bound of the power-law parameter in our numerical ML
implementation. For larger values the evaluation of the zeta function appearing in the
discrete Pareto law, cf. Appendix A.2, is not accurate enough to obtain reliable estimates.
The fact that the estimated values hit the upper bound quite frequently indicates that the
estimated values may become even larger when increasing the upper bound.

20We also generated synthetic power-law distributed random draws and estimated their
scaling parameters based on the algorithm for the selection of the tail region detailed above
(not reported). For the small sample sizes of the typical daily data, the tail parameter of
these synthetic data is highly volatile as well, even though the very large values observed
for the actual data are very rare. As usual, however, increasing the number of observations
(say more than 500), typically yields estimates very close to the true parameters.
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to a time-series of univariate daily data), we have made some attempt at
checking for statistical breaks for averages of degree statistics and have cut
our complete sample into subsamples accordingly. Note also that any analy-
sis of a network structure would be more or less futile, if we could not assume
some stationarity of the structural characteristics of the network. Fricke and
Lux (2012) demonstrate that the e-MID network is indeed structurally stable
along many dimensions.

In Out Total

Period 1-3 1 2 3 1-3 1 2 3 1-3 1 2 3
Exponential .0465 .0627 .0448 .0498 .0789 .0911 .0777 .0447 .0488 .0764 .0374 .0406
Gamma .0627 .0670 .0661 .0870 .0515 .0511 .0536 .0559 .0562 .0637 .0512 .0592
Geometric .0132 .0250 .0129 .0299 .0608 .0759 .0595 .0224 .0214 .0510 .0127 .0289
Log-normal .0814 .0748 .0816 .1001 .0725 .0722 .0736 .0746 .0631 .0605 .0641 .0701
Neg. Bin. .0063 .0177 .0082 .0224 .0114 .0160 .0138 .0105 .0153 .0208 .0115 .0103

Poisson .2313 .2409 .2347 .1715 .3500 .3774 .3476 .2678 .2973 .3318 .2892 .2087
Power-law .2099 .2151 .2107 .1985 .2077 .2024 .2079 .2140 .2366 .2219 .2427 .2373
Weibull .0591 .0630 .0646 .0872 .0547 .0552 .0574 .0555 .0522 .0575 .0481 .0581

Table 1: Daily data, degree. KS statistic for the candidate distributions
(complete). Minimum values in bold indicate the best �tting distri-
bution. Asterisks would indicate non-rejection of this distribution
at the 5% con�dence level, where the critical values were obtained
from a Monte-Carlo exercise as described in the main text. There
is, however, no such case in this table.

In Out Total

Period 1-3 1 2 3 1-3 1 2 3 1-3 1 2 3

Daily

Complete 1.61 1.61 1.60 1.67 1.50 1.48 1.50 1.54 1.52 1.51 1.51 1.57
(.001) (.003) (.002) (.005) (.002) (.003) (.002) (.005) (.001) (.002) (.001) (.003)

Tail 7.00 7.00 7.00 7.00 5.93 4.43 7.00 5.53 6.03 4.70 7.00 7.00
(.175) (.300) (.160) (.260) (.110) (.078) (.170) (.161) (.100) (.071) (.146) (.393)

Quarterly

Complete 1.28 1.26 1.28 1.33 1.29 1.28 1.29 1.33 1.24 1.23 1.24 1.27
(.004) (.006) (.005) (.001) (.004) (.008) (.006) (.001) (.003) (.006) (.004) (.009)

Tail 5.13 7.00 7.00 4.63 7.00 6.90 7.00 4.82 5.20 6.90 7.00 5.01
(.134) (.460) (.325) (.233) (.482) (.532) (.412) (.306) (.145) (.421) (.330) (.261)

Table 2: Power-law parameters and standard deviations, degree. Values
obtained via numerical maximization of the log-likelihood for dis-
crete data. Standard deviations (in parentheses) approximated as
(α− 1)/

√
T , with T being the number of observations. Top: daily

data, bottom: quarterly data.

We report our estimation results for the pooled daily data in Tables 1-
3. Our main �nding is that the negative Binomial distribution provides the
best �ts (in bold) for all daily degree measures and for all samples (i.e. the
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In Out Total

Period 1-3 1 2 3 1-3 1 2 3 1-3 1 2 3
Exponential .0357∗ .0354∗ .0355∗ .0954 .0642 .0580 .0353∗ .0388∗ .0685 .0637 .0300∗ .0457
Log-normal .0664 .0639 .0762 .1036 .0479 .0479 .0541 .0771 .0484 .0455 .0521 .0927
Power-law .0372 .0376 .0400 .0203∗ .0129∗ .0305∗ .0392 .0455 .0114∗ .0192∗ .0352 .0382∗

Table 3: Daily data, degree. KS statistic for the candidate distributions
(tail). Minimum values in bold indicate the best �tting distribu-
tion. Asterisks indicate non-rejection of this distribution at the
5% con�dence level, where the critical values were obtained from
a Monte-Carlo exercise as described in the main text.

complete samples and the three subsamples identi�ed via tests for struc-
tural breaks), cf. Table 1. The results from the GOF experiments indicate,
however, that the best �tting candidate distributions have to be rejected.
Therefore, even the winner among the candidate distributions appears to be
an unlikely description of the data. We should also stress that the �t of the
power-law is usually rather poor, competing with the Poisson distribution
for the worst description of the data. Similar to the �ndings for the individ-
ual days, the estimated tail parameters are between 1.5 and 1.6, cf. Table
2 (top, complete). Figure 7 together with the relatively poor KS statistics
for estimated power-laws suggests that estimates in the scaling range 1-2 are
obtained as very inaccurate straight lines �tted to a strongly curved distribu-
tional shape. Moving to the tail observations, we �nd that exponential and
power-law distributions tend to provide the best �t for all variables, cf. Ta-
ble 3. Thus, it appears that the power-law is a better description of the tail
observations - a usual �nding for many data sets. In contrast to the complete
distributions, the GOF experiments suggest that the estimated distributions
are mostly not rejected for the tail observations.21 Upon closer inspection,
however, we see the KS statistics of the exponential and the power-law are
typically close to each other, in particular when the tail exponents are very
large, cf. Table 2 (top, complete). Even though the power-law appears to
provide the best �t for some of the tail data, the very large parameter val-
ues (larger than 4, often close to 7) are in a range where the power-law
becomes almost undistinguishable from exponential decay. Often such high
values would be obtained spuriously from distributions with an exponential
decline as semi-parametric estimators of the tail index would not be able to
`identify' the limit of α → ∞. The huge di�erence in estimated power-law
parameters for the complete sample compared to the tail also indicates that
the empirical distribution shows pronounced curvature (actually con�rming

21This result is driven by the higher noise level in the tail data due to a smaller number
of observations compared to the complete distributions.
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the visual inspection of absence of a linear slope over the complete support
and very fast decline at the end in Figure 7). On the other hand, it is also
interesting to remark that the estimated coe�cients are relatively uniform
for both the complete sample and the tail, respectively, across periods and
for all the measures of degree. This speaks of relatively uniform shapes of
the distributions, at least in view of this simple statistic. Summing up, the
power-law distribution appears to be a poor description of the data, both
for the complete distribution and the tail observations (where it more or less
coincides with an exponential for the high estimates of the tail index). We
also need to stress that the identi�ed power-law exponents, both for individ-
ual days and pooled observations, are far o� from those reported in earlier
studies. It is not clear how these estimates were obtained.

4.2.3 Quarterly Data

In Out Total

Period 1-3 1 2 3 1-3 1 2 3 1-3 1 2 3
Exponential .1474 .1544 .1661 .1520 .0797 .0932 .0710 .0925 .1740 .1675 .1887 .2171
Gamma .0573 .0543 .0723 .0942 .0595 .0514 .0738 .0961 .0414 .0284∗ .0673 .0943
Geometric .1533 .1586 .1723 .1619 .0778 .0918 .0728 .1009 .1771 .1696 .1920 .2223
Log-normal .1141 .0972 .1274 .1377 .1063 .0984 .1164 .1226 .0972 .0760 .1185 .1453
Neg. Bin. .0601 .0580 .0729 .1025 .0708 .0615 .0836 .1081 .0395 .0318 .0627 .0881
Poisson .3117 .3462 .2753 .2561 .4367 .4707 .4116 .4183 .3601 .4115 .3183 .2489
Power-law .3828 .4023 .3849 .3522 .2727 .2728 .2842 .2608 .4376 .4546 .4387 .4291
Weibull .0380 .0342∗ .0456 .0689 .0624 .0609 .0736 .0912 .0246 .0361 .0325 .0495∗

Table 4: Quarterly data, degree. KS statistic for the candidate distribu-
tions (complete). Minimum values in bold indicate the best �tting
distribution. Asterisks indicate non-rejection of this distribution
at the 5% con�dence level, where the critical values were obtained
from a Monte-Carlo exercise as described in the main text.

In Out Total

Period 1-3 1 2 3 1-3 1 2 3 1-3 1 2 3
Exponential .0248∗ .0466 .0325∗ .0628∗ .0395∗ .0394 .0352∗ .0459∗ .0331∗ .0315∗ .0437∗ .0530∗

Log-normal .0379 .0441∗ .0431 .0766 .0526 .0533 .0663 .0756 .0451 .0494 .0769 .0794
Power-law .0651 .0748 .0471 .0949 .0502 .0384∗ .0559 .0918 .0515 .0405 .0602 .0778

Table 5: Quarterly data, degree. KS statistic for the candidate distributions
(tail). Minimum values in bold indicate the best �tting distribu-
tion. Asterisks indicate non-rejection of this distribution at the
5% con�dence level, where the critical values were obtained from
a Monte-Carlo exercise as described in the main text.

The results for the quarterly data are shown in Tables 4 and 5. Weibull
distributions typically provide the best �ts for the in- and total degrees,
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while Exponential and Gamma distributions yield comparable �ts as the
Weibull for the out-degrees. Similar to the complete distributions for the
daily data, the optimal �ts are insigni�cant, except for three cases. Again,
the best �ts appear to be unlikely descriptions of the observed data. The
power-law exponents for the complete sample are again quite small, typically
between 1.25 and 1.3, cf. Table 2 (bottom, complete). Turning to the tail
observations, we �nd that Exponential distributions provide the best �ts
in all but two cases (in-degree in period 1, out-degree period 1). Similar
to the daily observations, for the best �ts of the tail data, the pertinent
distributions cannot be rejected as the `true' data-generating process at the
95 percent signi�cance level. The poor �t of the power-law again comes
along with relatively large tail exponents, cf. Table 2 (bottom, tail). In
summary, similar to the daily data, we do not �nd evidence in favor of scale-
free networks.

4.2.4 Robustness and Discussion

A reason for not �nding evidence for power-law distributions may be the fact
that we focus on the subnetwork formed by Italian banks only. Stumpf et
al. (2005) have shown that (randomly chosen) subnetworks of scale-free net-
works are in fact not scale-free. Therefore we also checked the distributions
including foreign banks as well, similar to the existing papers using the e-MID
data. We found that the results (including the tail parameters) remain qual-
itatively una�ected (not reported). In terms of Stumpf et al. (2005), these
�ndings indicate again that the networks including all banks are unlikely to
be scale-free, and that our previous �ndings for Italian banks alone are not
biased due to random sampling from a larger scale-free network (indeed, it
seems very unlikely that the Italian banks should constitute a random set
from the overall sample of all banks). Then it comes as no surprise that the
subnetworks formed by Italian banks only are also not scale-free. In fact,
it is remarkable that there appears to be no signi�cant qualitative e�ect of
incorporating foreign banks or not.

In Finger et al. (2012) it has been shown that the quarterly e-MID net-
works are more complete representations of the underlying `latent' network
structure, whereas daily networks might be seen as random activations of
parts of the more complex, hidden structure. Under this perspective, the
lack of coincidence of the �tted distributions for di�erent levels of time ag-
gregation might not be too surprising.

Summing up, our results indicate that the power-law hypothesis needs to
be tested more thoroughly for other networks in general and the interbank
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network in particular,22 with the power-law being one of many candidate
distributions. The �ndings are in line with other studies casting doubts on
certain claims of power-law and scaling behavior in a broad range of empirical
studies (cf. Avnir et al., 1998).

4.3 The Distribution of the Number of Transactions

Note that the quarterly degree of a given bank is not the simple sum of its
daily degrees, since a link that has been activated many times over a quarter,
is counted only as one link on the quarterly level of network activity. If
we consider the number of links in the daily data as (possibly power-law
distributed) random variables, the number of transactions over a longer time
horizon is, in fact, what we obtain from simple aggregation of the daily
degrees observed for any bank i. Assuming that the degrees of all banks are
drawn from the same distribution, we obtain in this way a sample of sums
of random variables following the same underlying distribution. Note that
we would expect a power-law at the daily level to survive in the aggregation
process for an iid random process of link formation as well as for various
extensions allowing for `weak' dependency.23 The extremal behavior of the
distribution of degrees should, therefore, be preserved in the distribution of
the number of transactions over longer horizons. We turn to the analysis of
this quantity in this subsection.

Note also that the �nite size of the network might pose a problem due to
the e�ective imposition of an upper limit on the observable degrees. It might,
therefore, be the case that a scale-free distribution is just hard to verify
because of the small number of observations. In contrast, the aggregated
ntrans variables have the advantage that they have no obvious upper bound,
so testing the power-law hypothesis might be more sensible in this case.

Figures 12 and 13 show the ccdfs of the quarterly and daily ntrans vari-
ables. Again, linear decay over several orders of magnitude is hard to detect
visually. However, at least for the quarterly data we see that the variables
under study span several orders of magnitude, making the data more useful
candidates for our distribution �tting approach.

For daily data, the range of the observed variables remains rather limited,
even though the maximum value is roughly twice the one for the degrees
(not reported). Since for daily realizations of the number of transactions

22See Stumpf and Porter (2012).
23The stability under aggregation of power-laws characterizing the tails of iid random

variables is one of the basic tenets of the statistical theory of extremes, cf. Reiss and
Thomas (2007). In this sense, summing up daily power-law networks should preserve the
tail index for di�erent frequencies.
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Figure 12: Quarterly data, ntrans. Complementary cumulative distribu-
tion functions (ccdf) in-trans (top), out-trans (center), and total
trans (bottom) for all time periods on a log-log scale.
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Figure 13: Daily data, ntrans. Complementary cumulative distribution
functions (ccdf) in-trans (top), out-trans (center), and total
trans (bottom) for all time periods on a log-log scale.
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In Out Total

Period 1-3 1 2 3 1-3 1 2 3 1-3 1 2 3

Quarterly

Complete 1.19 1.19 1.19 1.21 1.21 1.22 1.21 1.23 1.16 1.16 1.16 1.17
(.003) (.005) (.003) (.008) (.003) (.006) (.004) (.009) (.002) (.004) (.003) (.006)

Tail 3.48 2.78 3.54 3.06 3.16 2.99 2.21 2.95 2.77 3.03 2.76 3.68
(.091) (.082) (.116) (.136) (.094) (.143) (.044) (.180) (.040) (.106) (.050) (.200)

Table 6: Power-law parameters and standard deviations, ntrans. Values
obtained via numerical maximization of the log-likelihood for dis-
crete data. Standard deviations (in parentheses) approximated as
(α− 1)/

√
T , with T being the number of observations. Quarterly

data.

we �nd virtually identical results to those of the daily degrees, we abstain
from presenting these here, and immediately turn to quarterly aggregated
observations.

In Out Total

Period 1-3 1 2 3 1-3 1 2 3 1-3 1 2 3
Exponential .0452 .0516 .0467 .0748 .2334 .2598 .2131 .2716 .0612 .0524 .0761 .0955
Gamma .0153 .0287 .0199 .0388 .0167 .0165 .0185 .0498 .0356 .0485 .0325 .0549
Geometric .0450 .0511 .0465 .0744 .2331 .2595 .2129 .2713 .0614 .0525 .0763 .0960
Log-normal .0801 .0786 .0843 .0953 .0712 .0610 .0725 .1013 .0701 .0508 .0738 .1207
Neg. Bin. .0205 .0280 .0249 .0419 .0205 .0188 .0223 .0586 .0353 .0477 .0321 .0543
Poisson .5744 .5859 .5775 .5527 .6706 .6860 .6710 .6221 .5896 .6164 .5813 .5216
Power-law .3610 .3865 .3658 .3384 .2381 .2397 .2607 .2209 .4497 .4488 .4648 .4236
Weibull .0185 .0244 .0186 .0420 .0383 .0389 .0392 .0668 .0391 .0481 .0386 .0437∗

Table 7: Quarterly data, ntrans. KS statistic for the candidate distribu-
tions (complete). Minimum values in bold indicate the best �tting
distribution. Asterisks indicate non-rejection of this distribution
at the 5% con�dence level, where the critical values were obtained
from a Monte-Carlo exercise as described in the main text.

We show the results in Tables 7 and 8, �nding that negative Binomial,
Gamma and Weibull distributions appear among the best �ts, depending on
the concept (in-, out-, or total transactions) and the period considered. How-
ever, their KS statistics are typically at a comparable level. The results from
the GOF experiments show that the best �tting distributions are nevertheless
rejected as data-generating processes (exception: total ntrans in period 3).
Again, the �t of the power-law is very poor in general, with tail parameters
around 1.20, cf. Table 6, and KS statistics that consistently come in sec-
ond to last (with the Poisson distribution performing worst). Moving to the
quarterly tail data, we �nd that in most cases the Log-normal provides the
best �t (exceptions: out-degree for the complete sample and total degree in
period 3). This is quite surprising, given that the scaling parameters now lie
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In Out Total

Period 1-3 1 2 3 1-3 1 2 3 1-3 1 2 3
Exponential .0684 .0874 .0709 .0687 .0393∗ .0805 .0532 .0751 .0528 .0616 .0492 .0948
Log-normal .0258∗ .0202∗ .0441∗ .0560∗ .0408 .0594∗ .0495 .0700∗ .0274∗ .0336∗ .0362∗ .0579
Power-law .0476 .0570 .0520 .1219 .0988 .0741 .1024 .0718 .0676 .0604 .0683 .0426∗

Table 8: Quarterly data, ntrans. KS statistic for the candidate distributions
(tail). Minimum values in bold indicate the best �tting distribu-
tion. Asterisks indicate non-rejection of this distribution at the
5% con�dence level, where the critical values were obtained from
a Monte-Carlo exercise as described in the main text.

in the `typical' range for power-laws, here between 2.21 and 3.68. Therefore,
even though the power-law estimates appear more sensible, the power-law
distribution is inferior by some margin in �tting the tail data (with a cut-o�
determined by the best-�tting Pareto law) to the Log-normal, and sometimes
also to the Exponential. As with the previous cases, the results from the GOF
experiments indicate that the best �tting tail distributions usually cannot be
rejected via KS tests with Monte-Carlo distributions. While it is well-known
that it is hard to distinguish Log-normal from power-law tails, these �ndings
raise doubts on the universality of power-law tails and highlight the need for
thorough statistical approaches of testing the power-law hypothesis.

As another robustness check, we investigated the distribution of transac-
tion volumes (tvol), cf. Appendix B, again di�erentiating between in-tvol,
out-tvol and their sum (total tvol), respectively. While the tails of the tvol
variables are typically much fatter compared to the degree and ntrans vari-
ables, the power-law remains a poor description both for daily and quarterly
data.

5 Conclusions

In this paper, we have revisited the distributional properties of interbank
loans for the Italian interbank network during the years 1999-2010. Using
both the degrees and the number of transactions, we �tted a set of di�erent
candidate distributions to these data for daily and quarterly aggregates, re-
spectively. Given that the daily networks have previously been claimed to
be scale-free (De Masi et al., 2006), it comes as a surprise that we �nd no
evidence in favor of the power-law hypothesis: at the daily level the degrees
are usually �t best by negative Binomial distributions, while the tails tend to
decay exponentially, i.e. the �tted power-laws display very large tail parame-
ters. At the quarterly level, Weibull, Gamma, and Exponential distributions
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tend to provide comparable �ts for the complete degree distribution, while
the tails again tend to display exponential decay. For the number of transac-
tions we �nd comparable results, even though the tails of the quarterly data
appear to be fatter. However, in this case the Log-normal distribution usu-
ally outperforms the power-law. Moreover, we found that the networks are
characterized by a substantial level of asymmetry, as exempli�ed by the low
correlation between in- and out-degrees. We also �nd that the two variables
do not follow identical distributions in general.

Overall these �ndings indicate that the power-law is typically a poor
description of the data. This implies that preferential attachment and related
mechanisms (see e.g. De Masi et al., 2006), are unlikely explanations for
the formation of the Italian interbank network. Note that these �ndings
are also not in line with a large part of the empirical (interbank) network
literature for other data sets, putting doubts on the universality of scale-free
behavior of interbank networks. Our results also indicate that the power-law
hypothesis needs to be tested more thoroughly for other networks in general
and the interbank network in particular. The �ndings are related to other
studies casting doubts on certain claims of power-law and scaling behavior
in a broad range of empirical studies (cf. Avnir et al., 1998, and Stumpf
and Porter, 2012), and it seems possible that claims of scale-free behavior of
interbank lending activity may not survive under closer statistical scrutiny.
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A Technical Appendix

A.1 Truncated Distributions and Maximum Likelihood

The distribution �tting approach described in the main text involves �tting
a set of candidate distributions with possibly di�ering support. For example,
some distributions have support at zero, while others do not. Similarly,
when focusing on the tail observations we have to get rid of the probability
mass below the cuto� point in order to accurately calculate the statistics.
Therefore, we describe the use of truncated distributions and ML �tting in
this Appendix in more detail.

A.1.1 Normalization

When working with truncated variables, we need to make sure to use the
correct pdfs and cdfs, since the ML estimation and the evaluation of the �t
(KS statistic) depend on them. In order to illustrate this issue, let variable
x have the pdf p(x) with support [0,∞]. As usual, the cdf is de�ned as

P (a) = P (X ≤ a) =

∫ a

0

p(x)dx. (6)

Now, suppose the data are (left-)truncated at some value xm, i.e. the variable
x̃ follows the same distribution as x, but the pdf has limited support [xm,∞]
with minimum value xm > 0. For our purposes, it is therefore useful to de�ne
the quantity

P<(a) = P (X < a) = 1−
∫ ∞
a

p(x)dx, (7)

or more compactly
P<(a) = P (a)− p(a). (8)

We can properly construct the pdf of x̃, say p̃, as

p̃(x) =

{
p(x)

1−P<(xm)
, if x ≥ xm

0, else.
(9)

where the denominator distributes the probability mass of p(x) among the
support of x̃.

For the calculation of the KS statistics, we also need the adjusted cdf.
For the supported values of x̃ it takes the form

P̃ (x) =

∫ x

xm

p(x)

1− P<(xm)
dx =

1

1− P<(xm)

∫ x

xm

p(x)dx, (10)
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or

P̃ (x) =
P (x)− P<(xm)
1− P<(xm)

, (11)

which can be easily evaluated.

A.1.2 Maximum Likelihood for Truncated Variables

Using the previous de�nitions, we can show that the ML estimator for left-
truncated variables does not coincide with the standard estimator. The stan-
dard ML estimator, i.e. using a sample of n observations of x and denoting
by θ the vector of parameters, can be written as

L(θ|x1, · · · , xn) = p(x1, · · · , xn|θ) =
n∏
i

p(xi|θ), (12)

or in logs

ln(L) =
n∑
i

ln[p(xi|θ)]. (13)

Using the de�nitions from above, we can show that the ML estimator for
left-truncated variables di�ers from the one in Eq. (13). Using Eq. (9), we
can write the likelihood as

L =
ñ∏
i

p̃(xi|θ) =
ñ∏
i

p(x|θ)
1− P<(xm|θ)

, (14)

where x ignores those observations smaller than xm and the total number of
observations is ñ instead of n. Taking logarithms we obtain

ln(L) =
ñ∑
i

ln

[
p(xi|θ)

1− P<(xm|θ)

]
=

ñ∑
i

ln[p(xi|θ)]−
ñ∑
i

ln[1−P<(xm|θ)], (15)

which can be written as

ln(L) = −ñ ln[1− P<(xm|θ)] +
ñ∑
i

ln[p(xi|θ)]. (16)

The second part of this Eq. looks familiar, as it corresponds to Eq. (13) for
the ñ observations with values ≥ xm. However, the normalization term on
the left does not vanish (as it depends on the parameter vector) and a�ects
the location of the maximum likelihood estimator. Therefore, we need to
�nd the θ that maximizes Eq. (16). The standard ML estimator would not
be e�cient.

35



A.2 Discrete Power-laws and Parameter Estimation

This presentation is mostly based on Clauset et al. (2009).

A.2.1 Discrete Power-laws

A power-law distributed variable x obeys the pdf

p(x) ∝ x−α, (17)

where α > 0 is the tail exponent with `typical' interesting values in the
range between 1 and 3. In many cases, however, the power-law only applies
for some (upper) tail region, de�ned by the minimum value xm. While it
is common to approximate discrete power-laws by the (simpler) continuous
version, for our (integer-valued) data, we employ the more accurate discrete
version in the paper.24

In the discrete case, the cdf of the power-law can be written as

P (x) =
ζ(α, x)

ζ(α, xm)
, (18)

where

ζ(α, xm) =
∞∑
n=0

(n+ xm)
−α (19)

is the generalized or Hurwitz zeta function.

A.2.2 Estimation of α and xm

For a given lower bound xm, the ML estimator of α can be found by direct
numerical maximization of the log-likelihood function

L(α) = −n ln[ζ(α, xm)]− α
n∑
i=1

ln[xi], (20)

where n is the number of observations.25 For simplicity, we approximate
the standard error of the estimated α̂ (for α̂ > 1) using the closed-form

24Clauset et al. (2007) show that this is necessary for data sets from the social sciences,
where the maximum value is usually only a few orders of magnitude larger than the
minimum, i.e. the tail is heavy but rather short. In such cases the estimated exponents
can be biased severely when using the continuous approximation.

25Using a quadratic approximation of the log-likelihood at its maximum, Clauset et

al. (2009) also derive an approximate closed-form solution for the estimate of α ' 1 +

n/
(∑n

i=1 ln
[

xi

xm−0.5

])
. This can be seen as an adjusted Hill-estimator, see Hill (1975).

While we always report the exact ML estimator, we checked that the approximation is
typically not too bad.
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solution based on continuous data.26 Neglecting higher-order terms, this can
be calculated as

σ =
α̂− 1√

n
. (21)

However, the equations assume that xm is known in order to obtain an ac-
curate estimate of α.27 When the data span only a few orders of magnitude,
as usual in many social or complex systems, an underpopulated tail would
come along with little statistical power. Therefore, we employ the numerical
method proposed by Clauset et al. (2007) for selecting the xm that yields
the best power-law model for the data. To be precise, for each xm over some
reasonable range, we �rst estimate the scaling parameter using Eq. (20) and
calculate the corresponding KS statistic between the �tted data and the the-
oretical distribution with the estimated parameters. The reported xm and
α are those that minimize the KS statistic, i.e. minimize the distance be-
tween the observed and �tted probability distribution. According to Clauset
et al. (2007; 2009), minimizing the KS statistic is generally superior to other
distance measures, e.g. likelihood-based measures such as AIC or BIC.

A.3 Goodness-of-Fit Test for the Estimated Distribu-

tions

Since the distribution of the KS statistics is unknown for the comparison be-
tween an empirical subsample and a hypothetical distribution with estimated
parameters, we carry out a Monte Carlo approach. We sample synthetic data
sets from the estimated distribution, compute the distribution of KS statistics
and compare the results to the observed value for the original data set. If the
KS statistic of the empirical data set is beyond the α percent quantile of the
Monte Carlo distribution of KS values, we reject the pertinent distribution at
the 1−α level of signi�cance. In our results, we indicate signi�cant �ts at the
5% con�dence level using asterisks. We should stress that we carry out this
(very time-consuming) GOF experiment only for the distribution with the
minimum KS statistic for each sample and variable, respectively. This can
be justi�ed by the fact that, even though other candidate distributions may
not be rejected as well, they are clearly inferior to the optimal distribution
in terms of the KS statistic.

26Clauset et al. (2009) also derive an (approximate) estimator for the standard error
based on discrete data, which is, however, much harder to evaluate as it involves derivatives
of the generalized zeta function.

27See Clauset et al. (2007; 2009) for an extensive discussion.
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Figure 14: Quarterly data, tvol. Complementary cumulative distribution
functions (ccdf) in-tvol (top), out-tvol (center), and total tvol
(bottom) for all time periods on a log-log scale.

B Distributional Properties of Transaction Vol-

umes

Here we report the results using another important measure for interbank
networks, namely the transaction volumes (tvol). We use the same distribu-
tion �tting approach as before, di�erentiating between in-tvol, out-tvol and
their sum (total tvol), respectively. Figures 14 and 15 show the ccdfs on a
for the quarterly and daily variables on a log-log scale. We should stress
that the minimum trade size on the e-MID market is 50,000 Euros. In order
to run our estimation procedure in a reasonable amount of time, we rescale
the tvol variables by a factor of 10−6 such that a transaction size of 50,000 is
represented by a value of 0.05.28 We then round the tvol variable towards the
nearest integer (otherwise the discrete candidate distributions could not be
accurately evaluated), again ignoring zero values. In this way, we restrict our
samples to relatively large transaction volumes with at least 500,000 Euros,
represented by positive integer values. Note that, besides the upward bias of
the data and the fact that the data now span several orders of magnitude, it
is again hard to visually detect linear decay over several orders of magnitude
in the ccdfs. We should also stress that we did not perform the GOF exercise
for the tvol variables, since it is too time-consuming in this case.

28Note that the maximum daily (quarterly) transaction volumes were 3.75bn (113.46bn)
Euros for in-tvol, 4.96bn (111.93bn) Euros for out-tvol and 5.32bn (146.06bn) Euros for
total tvol, respectively. For such huge numbers, the estimation procedure, in the numerical
optimization for the power-law parameters, tends to take a very long computation time.
Therefore, the results in this section should be treated with care, since the rescaling might
a�ect our statistical analysis.
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Figure 15: Daily data, tvol. Complementary cumulative distribution func-
tions (ccdf) in-tvol (top), out-tvol (center), and total tvol (bot-
tom) for all time periods on a log-log scale.

B.1 Daily Data

In Out Total

Period 1-3 1 2 3 1-3 1 2 3 1-3 1 2 3
Exponential .1485 .1868 .1252 .1141 .1926 .1981 .1986 .1294 .1737 .2118 .1578 .1242
Gamma .0765 .0972 .0675 .0821 .0685 .0566 .0690 .0834 .0833 .0876 .0766 .0942
Geometric .1471 .1851 .1241 .1120 .1919 .1975 .1980 .1281 .1729 .2108 .1570 .1226
Log-normal .0274 .0253 .0276 .0340 .0319 .0344 .0310 .0357 .0231 .0248 .0224 .0259

Neg. Bin. .0686 .0876 .0604 .0753 .0599 .0489 .0598 .0766 .0751 .0779 .0685 .0880
Poisson .6552 .6878 .6423 .6253 .6780 .6785 .6728 .6618 .6803 .6971 .6715 .6527
Power-law .3587 .3324 .3643 .3836 .3416 .3320 .3490 .3774 .3678 .3406 .3693 .3897
Weibull .0499 .0648 .0442 .0602 .0427 .0355 .0482 .0590 .0536 .0561 .0496 .0698

Table 9: Daily data, tvol. KS statistic for the candidate distributions (com-
plete). Minimum values in bold. Signi�cance tests not carried out.

Tables 9-11 show the results for the daily data. The complete distribu-
tions are now usually �tted best by Log-normal distributions, whereas the �t
of the power-law is very poor in general. The power-law parameters are again
very small, with typical values around 1.22, cf. Table 10 (top, complete). For
the tail observations, the best �t again is always provided by Log-normal dis-
tributions, cf. Table 11. Interestingly, the tail exponents of the daily data
are within the typical range of meaningful power-laws, cf. Table 10 (top,
tail), but the power-law is still not the best description of the data. In the
end, for the transaction volumes we �nd no evidence in favor of power-laws.

B.2 Quarterly Data

Tables 12 and 13 show the results for the quarterly data. The complete in-,
out-, and total degree distributions are now �t best by Weibull, negative
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In Out Total

Period 1-3 1 2 3 1-3 1 2 3 1-3 1 2 3

Daily

Complete 1.23 1.24 1.22 1.24 1.21 1.22 1.21 1.22 1.22 1.23 1.21 1.22
(.001) (.001) (.001) (.001) (.001) (.001) (.001) (.002) (.001) (.001) (.001) (.001)

Tail 2.66 2.15 2.72 2.86 3.23 2.63 4.88 3.39 3.33 3.27 3.35 3.38
(.010) (.009) (.013) (.042) (.022) (.023) (.239) (.079) (.019) (.036) (.023) (.069)

Quarterly

Complete 1.13 1.15 1.13 1.16 1.14 1.15 1.14 1.15 1.12 1.12 1.14 1.14
(.002) (.004) (.002) (.006) (.002) (.004) (.003) (.006) (.002) (.003) (.002) (.005)

Tail 2.53 2.31 2.55 2.81 3.37 1.97 3.43 2.11 2.02 2.02 3.36 2.46
(.050) (.074) (.060) (.155) (.346) (.050) (.284) (.077) (.020) (.040) (.315) (.091)

Table 10: Power-law parameters and standard deviations, tvol. Values ob-
tained via numerical maximization of the log-likelihood for dis-
crete data. Standard deviations (in parentheses) approximated
as (α − 1)/

√
T , with T being the number of observations. Top:

daily data, bottom: quarterly data.

In Out Total

Period 1-3 1 2 3 1-3 1 2 3 1-3 1 2 3
Exponential .0752 .1339 .0720 .1270 .0306 .0851 .0442 .0887 .0315 .0547 .0201 .0782
Log-normal .0194 .0235 .0175 .0169 .0141 .0170 .0425 .0245 .0133 .0162 .0170 .0279

Power-law .0516 .0536 .0526 .0226 .0587 .0466 .0627 .0301 .0557 .0455 .0645 .0351

Table 11: Daily data, tvol. KS statistic for the candidate distributions
(tail). Minimum values in bold. Signi�cance tests not carried
out.

Binomial, and Log-normal distributions, respectively. In many cases, these
distributions yield comparable KS statistics, but the clear advantage of the
Log-normal distribution for the daily data does not carry over to the quarterly
level in all cases. Similar to the daily estimates, the power-law parameters
are within the usual range of empirical power-laws. As before, however, the
tails are best described by Log-normal distributions. Therefore, while the
tails of the tvol variables are somewhat fatter compared to the degree and
ntrans variables, the power-law remains a poor description of the data.
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In Out Total

Period 1-3 1 2 3 1-3 1 2 3 1-3 1 2 3
Exponential .1741 .1940 .1722 .1258 .3419 .3656 .3383 .3139 .1520 .1808 .1390 .0887
Gamma .0511 .0713 .0429 .0313 .0342 .0370 .0465 .0449 .0722 .0881 .0631 .0651
Geometric .1741 .1940 .1722 .1258 .3418 .3655 .3383 .3139 .1519 .1808 .1390 .0886
Log-normal .0619 .0486 .0626 .1075 .0610 .0635 .0566 .0969 .0332 .0212 .0316 .0810
Neg. Bin. .0491 .0701 .0404 .0314 .0298 .0319 .0417 .0414 .0712 .0867 .0626 .0649
Poisson .7128 .7366 .6989 .6848 .7579 .7574 .7516 .7264 .7139 .7277 .6969 .6907
Power-law .4030 .3888 .4106 .3765 .2730 .2752 .2910 .2930 .4733 .4614 .4545 .4588
Weibull .0202 .0378 .0165 .0462 .0308 .0334 .0260 .0585 .0447 .0529 .0430 .0566

Table 12: Quarterly data, tvol. KS statistic for the candidate distributions
(complete). Minimum values in bold. Signi�cance tests not car-
ried out.

In Out Total

Period 1-3 1 2 3 1-3 1 2 3 1-3 1 2 3
Exponential .0855 .1380 .0759 .1476 .0961 .1529 .0567 .1563 .1071 .1434 .0721 .1508
Log-normal .0271 .0542 .0267 .0521 .0674 .0407 .0475 .0459 .0353 .0483 .0695 .0394

Power-law .0642 .0588 .0672 .0703 .0785 .0733 .0813 .0790 .0788 .0778 .0812 .0484

Table 13: Quarterly data, tvol. KS statistic for the candidate distributions
(tail). Minimum values in bold. Signi�cance tests not carried
out.
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