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1 Introduction

Since Hamilton’s (1989) introduction of a regime-switching process for the statistical analysis

of the different phases of the business cycle, Markov-switching models have become a very

widespread and popular tool in empirical economics and empirical finance. While Hamilton’s

approach had been cast in discrete time, continuous-time models with Markov switching regimes

have been developed subsequently particularly for applications in finance. Examples include

interest rate models (Smith, 2002; Dai and Singleton, 2003; Choi, 2009), and the analysis of

option pricing and hedging under regime-switching dynamics of the underlying (Barone-Adesi

and Whaley, 1987; Guo and Zhang, 2004; Elliott et al., 2007, 2011; Fuh et al., 2012).

When estimating such models, the typical problem encountered is the same as with

continuous-time models more generally: that one observes only discrete realizations of the

underlying instantaneous dynamics, and that safe for very simple cases, such objects as the

conditional density of an observation at some t + ∆t given the value at time t are unknown

(Aı̈t-Sahalia, 2007). Hence, the absence of closed-form solutions for conditional densities often

makes exact likelihood estimation unfeasible. In the case of Markov-switching diffusions, the

added layer of complexity due to regime changes has so far prevented likelihood inference even in

those cases where the stochastic differential equations activated in different regimes all possess

closed-form solutions of their densities. As a result, a large literature has developed that pur-

sues alternative avenues for parameter estimation of Markov-switching diffusions. For instance,

quasi-ML estimation is used by Smith (2002) for a discretized version of a Markov-switching

stochastic volatility model. Choi (2009) uses Hermite polynomial expansions for the individ-

ual regimes of a Markov-switching model of interest rate dynamics together with a discretized

Hamilton (1994) algorithm for updating conditional regime probabilities, Metzner et al. (2007)1

use an EM algorithm, Elliott et al. (2008) develop moment-based estimators, and a relatively

large strand of literature has advanced Markov chain Monte Carlo methods for such processes,

cf. Liechty and Roberts (2001), Hahn et al. (2010), among others.

In this paper, we show that for a large class of regime-switching models, closed-form con-

1This paper also provides some information on the use of Markov switching diffusions in other research areas,
particularly in molecular dynamics.
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ditional densities might be obtained in a relatively straightforward way using an appropriate

ansatz. Basically, in all those cases where the components (individual regimes) follow a diffu-

sion process with a known density (not necessarily the same for all regimes), the density of the

entire process can also be determined explicitly. This broad applicability will become already

fully evident when dealing with the simple case of a pure diffusion process with two regimes

that we consider in sec. 2. In sec. 3, we apply the same approach to a much more compli-

cated model with a large number of volatility states: The Poisson multifractal asset-pricing

model introduced by Calvet and Fisher (2001). Discretized versions of this new model have

been found to improve upon standard volatility models in a number of applications (Calvet

and Fisher, 2004, 2006; Lux, 2008; Lux and Kaizoji, 2007) and have also been adapted for

modelling inter-trade durations (Chen et al., 2013). Recent research also shows very successful

applications of continuous-time multifractal models for term structure modelling (Calvet et al.,

2012) and option pricing (Calvet et al., 2013). Essentially, the ‘multifractal’ approach appears

to provide a very versatile family of models to capture a hierarchical multi-component structure

of a dynamic process in a parsimonious and robust way. We show that the continuous-time mul-

tifractal model can be interpreted as a regime switching diffusion with a large number of states,

and that, with some effort, the approach introduced in sec. 2 allows to establish its transient

density in closed form. Given the promising results of the previous work on this new class of

time-series models, the possibility of working with closed-form densities should be particularly

useful. Sec. 4 will present an illustration of ML estimation based on the closed-form density of

the Poisson multifractal model, and sec. 5 concludes.

2 Exact, closed form solutions for simple regime-switching dif-

fusion models

We are interested in continuous-time regime-switching diffusion processes with a latent Markov

chain st that determines the choice of the pertinent active regimes with their regime-dependent

drift and diffusion functions:
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dxt = µ (xt, st; θ) dt+ σ (xt, st; θ) dWt (1)

with xt a univariate variable following a regime-switching diffusion process, µ (·) the drift

and σ (·) the diffusion functions, and θ a vector of parameters. st follows a continuous-time

first-order Markov chain with n states with matrix Q of intensity parameters. The entries qij

of Q are the intensities, i.e. rates of probability, with which the process switches from state i

to state j, and qii = −
∑

i 6=j qij .

For each regime, all standard conditions will be assumed to be satisfied to allow characteriza-

tion of the time development of the pertinent transient pdf by the usual infinitesimal generator

and forward Kolmogorov (Fokker-Planck) equation:

∂fk(x, θ; t)

∂fk
= − ∂

∂x
[µk(x; θ) fk(x, θ; t)] +

1

2

∂2

∂x2
[σ2k(x; θ) fk(x, θ; t)] (2)

with µk(·), σk(·) the drift and diffusion functions activated for st = k (i.e. all the processes

active in different regimes are well-behaved).

For the compound process, stochastic calculus allows to determine the dynamic solution of

the joint densities f(x, s, θ; t) by a system of Fokker-Planck equations (cf. Mao and Yuan, 2006;

Yin and Zhu, 2010):

∂f(x, s; θ, t)

∂t
= − ∂

∂x
[µ(x, s; θ) f(x, s; θ, t)] +

1

2

∂2

∂x2
[σ(x, s; θ) f(x, s; θ, t)] +Q · f(x, s; θ, t) (3)

There has been a sourge of recent interests in such regime-switching (or hybrid) diffusion

processes. Basic results on the existence of an ergodic distribution and the convergence of

the transient dynamics to the stationary distribution are provided in Skorokhod (1989, II, §2)

Surveys of recent mathematical results can be found in Mao and Yuan (2006) and Yin and

Zhu (2010). The system of Fokker-Planck equations characterizing the transient densities has

been used to derive stationary distributions by Mao et al. (2005). Kauschke (2010) applies

their results to an agent-based behavioural finance model. Despite a variety of applications

in finance, molecular dynamics, and communication technology, to the best of our knowledge,
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available literature has never attempted to derive closed-form solutions for the time evolution of

the joint density of such processes. One contribution of our paper will be to provide an avenue

towards such exact solutions for a large class of regime-switching models.

To illustrate how to obtain closed-form solutions to the transient density of a regime-

switching diffusion, we first consider the simple case of a pure diffusion process with two regimes:

dxt = σ(xt, st)dWt (4)

with σ(., .) = σ1 if st = 1 and σ(., .) = σ2 if st = 2. The continuous-time Markov chain st is

governed by the infinitesimal matrix of intensity parameters qij :

Q =

q11 q21

q12 q22

 =

−q12 q21

q12 −q21

 . (5)

The intensity parameter qij gives the rate at which the process switches from state i to state

j in the continuous-time limit and it holds that qij > 0 for i 6= j. The transient density is, then,

defined by the solution to the following system of two linear second-order partial differential

equations

∂u

∂t
= a1

∂2u

∂x2
− q12u+ q21w,

∂w

∂t
= a2

∂2w

∂x2
− q21w + q12u.

(6)

In (6), we have defined the state-wise densities as u(x, t) = f(x, s = 1; t) and w(x, t) =

f(x, s = 2; t) and a1 = 1
2σ

2
1, a2 = 1

2σ
2
2. Following an approach for the solution of similar systems

of partial differential equations suggested in different applications (Polyanin and Manzhirov,

2007, sec. T10), we assume that the solution to this problem can be decomposed as follows:

u(x, t) = ϕ1(t)θ1(x, t), w(x, t) = ϕ2(t)θ2(x, t). (7)
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This leads upon substitution to:

ϕ′1θ1(x, t) + ϕ1
∂θ1
∂t

= a1ϕ1
∂2θ1
∂x2

− q12ϕ1(t)θ1(x, t) + q21ϕ2(t)θ2(x, t),

ϕ′2θ2(x, t) + ϕ2
∂θ2
∂t

= a2ϕ2
∂θ2
∂x2
− q21ϕ2(t)θ2(x, t) + q12ϕ1(t)θ1(x, t).

(8)

A solution to this system consists in θ1 and θ2 solving the independent partial differential

equations:

∂θ1
∂t

= a1
∂θ21
∂x2

,
∂θ2
∂t

= a2
∂θ2
∂x2

, (9)

and ϕ1(t), ϕ2(t) being the solutions to:

ϕ′1θ1 = −q12ϕ1θ1 + q21ϕ2θ2,

ϕ′2θ2 = −q21ϕ2θ2 + q12ϕ1θ1.

(10)

Note that the dynamic laws of eq. (9) just represent the evolution of the densities of two

Brownian motions for states 1 and 2. Solving eqs. (10) requires slightly more effort. Trying

typical solutions of the form ϕ1(t) = α1e
λ1t,ϕ2(t) = α2e

λ2t, one finds that λ1,2 solve the char-

acteristic equation:

λ2 + (q12 + q21)λ = 0. (11)

Hence, there are two eigenvalues solving this system: λ1 = 0 and λ2 = −(q12 + q21). The

time-dependent solutions of ϕ1(t) and ϕ2(t) can be written as:

ϕ1(t) = A1
q21
q12
−A2e

λ2t,

ϕ2(t) = A1 +A2e
λ2t.

(12)

Where the first term on the right-hand side corresponds to the solution for the root λ1 = 0,

and A1 and A2 are constants of integration to be fixed by appropriate initial or boundary

conditions.
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In our case, the constants may be obtained in most applications from the probabilities of

observing state 1 or 2 at time t = 0. Denoting by p0 the probability of state 1 at time t=0 we

obtain the following equations for determination of A1 and A2:

ϕ1(0) = A1
q21
q12
−A2 = p0,

ϕ2(0) = A1 +A2 = 1− p0.
(13)

We obtain: A1 = q12
q12+q21

, A2 = (1− p0) q21−q12q21+q12
.

Inserting in (12), we find the closed-form solutions:

ϕ1(t) =
q21

q12 + q21
+

(
p0 −

q21
q12 + q21

)
e−(q21+q12)t,

ϕ2(t) =
q12

q12 + q21
−
(
p0 −

q21
q12 + q21

)
e−(q21+q12)t.

(14)

The time-varying weights ϕ1(t) and ϕ2(t) for the two regimes thus converge to their limiting

probabilities, q21
q21+q12

and q12
q21+q21

, respectively, and the transient part governed by the second

eigenvalue λ2, covers the relaxation from an initial distribution (p0, 1 − p0) to the limiting

distribution. In order to arrive at a closed-form solution for u(x, t) and w(x, t), one just has

to multiply ϕ1(t) and ϕ2(t) to the solutions of the partial differential equations for θ1(x, t)and

θ2(x, t), i.e. two Brownian motions:

θ1 =
1√

2πσ1t
e
− 1

2
(
x−x0
σ1t

)2
, θ2 =

1√
2πσ2t

e
− 1

2
(
x−x0
σ2t

)2
(15)

where x0 is the observed realisation of the process at t = 0.

The form of the solution of the conditional density seems intuitively plausible: It combines

the densities of both regime-specific stochastic differential equations with time-varying weights

that can be interpreted as their probabilities of occurrence at time t. Over time, these weights

converge to the limiting probabilities of both regimes as the influence of the initial condition

gets lost over time. The unconditional transient density of the entire process is then given by

the sum of both components: ϕ1(t)θ1(x, t) + ϕ2(t)θ2(x, t).

7



Inspection shows that our ansatz can be generalized along many dimensions and could pro-

vide closed-form solutions for a wide array of regime-switching diffusions. First, mere inspection

of eqs. (7) to (10) shows that the same approach could be applied to dynamic systems with any

number of states. An example with a large number of states will be given in the next section.

Second, we could allow for regime-dependent drift functions (as in eq. (1)) without having to

modify the approach above: By simple inspection, one recognizes that the drifts would only

enter in eqs. (9) which would, then, again just reproduce the regime-specific Fokker-Planck

equations. θ1(x, t) and θ2(x, t) would correspond to the closed-form solutions of the pertinent

SDEs governing the two regimes, and ϕ1(t) and ϕ2(t) would be determined as in the case with-

out drift. As long as the density for all regime-specific processes are known (which might be

different from each other) the overall process could also be described by a density in closed form.

Third, multivariate extensions would also be straightforward (one just would have to replace the

scalar-valued xt by a vector in the above derivations) and availability of a closed-form solution

would only hinge on availability of such solutions for all individual regimes. One could also think

of applying this approach for transition rates depending on time and state, but the solvability

of such more general cases would depend on the precise nature of the state-dependency.

3 An exact solution for a model with a large number of regimes:

The Poisson multifractal model

In the following, we will apply the approach outlined above to a recently proposed model that

has been formulated originally as a compound Brownian motion subordinate to a stochastic

trading time defined by the cumulative density of a certain multifractal measure. We will show

that this process can be cast into the framework of regime-switching diffusions, and provide the

closed-form solution of its density for an arbitrary number of regimes.

Calvet and Fisher (2001) have introduced a so-called Poisson multifractal measure as a

product of independent random variables with exponential density of their renewal times. When

a new arrival occurs, the previous value of the pertinent component is replaced by a new draw

from its underlying distribution. Here we assume draws from identical Binomial distributions
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with the two realizations M i
t ∈ {m0, 2 − m0} which guarantees E[M i

t ] = 1 ∀ i, t with i the

rank of the pertinent component i = 1, . . . , k and t the time index. The overall compound

process is described by the mass
∏k
i=1M

i
t which is interpreted as a Markov model of stochastic

trading time in an asset-pricing context. In the resulting compound asset-pricing model, the

log-returns x(t) = lnP (t)− lnP (0) are assumed to follow a Brownian motion subordinate to a

time transformation θ(t):

x(t) = B[θ(t)] (16)

with B[·] the Brownian process and θ(t) stochastic trading time defined as the cumulative

density of the Poisson multifractal measure as defined above.

Following the approach of previous multifractal processes adapted from statistical physics

(Mandelbrot, 1974; Calvet et al., 1997), Calvet and Fisher (2001) initially defined the Poisson

multifractal on a finite interval [0, T ]. However, this limitation appears unnecessary, as the

process could easily be prolonged beyond “time” T without any disruption of its stochastic

structure when the initial cascade process is completed. Hence, due to its Markov structure,

the Poisson multifractal might be easily generalized to a continuous-time process for all t ≥ 0.

This feature distinguishes this type of multifractal model from its predecessor, the combinatorial

Multifractal Model of Asset Returns of Calvet et al. (1997), and Calvet and Fisher (2002).

We could, then, alternatively formalize the Poisson multifractal with a discrete distribution

of multipliers as a continuous-time stochastic process with regime switching. With Binomial

distribution of the multipliers and k states, the realization of the product of these multipliers,

Mt =
∏k
i=1M

i
t , has 2k possible values. Since the current draw of Mt defines the local volatility

of a Brownian process via (16) as long as no arrival occurs in any of the Poissonian components,

we can reformulate the compound process (16) as a diffusion process switching between 2k states

identified by their respective diffusion terms:

dxt = σ(st)dWt (17)

with σ(·) = σi if st = i (i = 1, . . . , 2k), and st a continuous-time Markov chain governed by

the infinitesimal matrix Q of intensity parameters qij .
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The structure of the multifractal model generates a particular, sparse structure of the in-

tensity matrix. Starting with the simplest of cases, for k = 1, the intensity matrix is that of

a baseline regime-switching model with two states and identical probabilities to switch to the

other state. Hence, Qk=1 would assume the simple structure:

Qk=1 =

 −q1 q1

q1 −q1

 . (18)

For k = 2, Mt =
∏2
i=1M

i
t consists of two components with arrival intensities denoted, say,

by q1 and q2 (the multifractal structure would imply a higher mean survival time of the second

component, so q2 would be smaller than q1). If we arrange the four possible states as follows:

m0m0, (1−m0)m0, m0(1−m0), (1−m0)(1−m0), the intensity matrix would become:

Qk=2 =



−(q1 + q2) q1 q2 0

q1 −(q1 + q2) 0 q2

q2 0 −(q1 + q2) q1

0 q2 q1 −(q1 + q2)


. (19)

Similarly, for k = 3, we could choose the order of the eight states as m0m0m0, (1−m0)m0m0,

m0(1−m0)m0, (1−m0)(1−m0)m0, m0m0(1−m0), (1−m0)m0(1−m0), m0(1−m0)(1−m0),

(1−m0)(1−m0)(1−m0), with pertinent intensity matrix:

Qk=3 =



−β q1 q2 0 q3 0 0 0

q1 −β 0 q2 0 q3 0 0

q2 0 −β q1 0 0 q3 0

0 q2 q1 −β 0 0 0 q3

q3 0 0 0 −β q1 q2 0

0 q3 0 0 q1 −β 0 q2

0 0 q3 0 q2 0 −β q1

0 0 0 q3 0 q2 q1 −β



, (20)

with β = q1 + q2 + q3.
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If we continue like this, i.e. for each subsequent step of the cascade ordering the new set of

states according to the previous sequence with first realization m0 and then 1 −m0 added for

the next step, we obtain a succession of quadratic block-diagonal matrices

Qk =

 Ak Bk

Bk Ak

 (21)

in which block Ak is almost identical to the full matrix at the previous step, Qk−1.

The Fokker-Planck equation for the probability density associated to such a process consists

of a vector of 2k state-wise partial differential equations. For instance, for k = 2 it is given by:

∂u1
∂t

= σ1
∂2u1
∂x2

− (q1 + q2)u1 + q1u2 + q1u3

∂u2
∂t

= σ2
∂2u2
∂x2

+ q1u1 − (q1 + q2)u2 + q2u4

∂u3
∂t

= σ3
∂2u3
∂x2

+ q2u1 − (q1 + q2)u3 + q1u4

∂u4
∂t

= σ4
∂2u4
∂x2

+ q2u2 + q1u3 − (q1 + q2)u4

(22)

Here, we have defined the state-wise densities ui(x, t) = f(x, s = i; t) for i = 1, ..., 4.

Although the dimension of the intensity matrix can become arbitrarily large with increasing

k, we can obtain a general closed form solution for the vector of partial differential equations

(22) and its generalizations to higher k. We again use the ansatz of eq. (7) as a starting point

and decompose the state-dependent densities as follows:

ui(x, t) = ϕi(t)θi(x, t) (23)

Upon substitution, we get a similar system of equations as for the simple case of a two-state

regime switching diffusion depicted in eq. (5). A solution of this system (for any k) consists

analogously in θi(x, t) solving the 2k independent partial differential equations:

∂θi
∂t

=
1

2
σi
∂2θi
∂x2

, (24)
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and the ϕi(t) being solutions to a system of 2k ordinary linear differential equations for

the flow of probability between states. We will show in the following that we can determine

analytically the full set of eigenvalues and eigenvectors of this system, and, therefore, obtain

a closed-form solution for the transient density of a Poisson multifractal asset-pricing model

for any k. To this end, we will compute the full set of eigenvalues, their eigenvectors, and

integration constants depending on state probabilities at time 0.

Eigenvalues

To set the scene, we start again with k = 1 leading to the following variation of the system

of equations (10):

ϕ′1θ1 = −q1ϕ1θ1 + q1ϕ2θ2

ϕ′2θ2 = q1ϕ1θ1 − q1ϕ2θ2.

(25)

We denote by λ(k) the vector of eigenvalues for a Poisson model with k hierarchical com-

ponents. The solutions ϕ1(t) = α1e
λ
(1)
1 t, ϕ2(t) = α2e

λ
(1)
2 t of eqs (25) are characterized by

eigenvalues that satisfy:

det(D1) = det

 −q1 − λ(1) q1

q1 −q1 − λ(1)

 = 0, (26)

which leads to λ
(1)
1 = 0 and λ

(1)
2 = −2q1.

Now move on to k = 2. For simplification of notation, we denote by ρ(k) =
∑k

j=1 qj + λ(k)

(which here is q1 + q2 +λ(2)) and multiply D2 by −1. Hence, the eigenvalues are determined by

det(D2) = det



ρ(2) −q1 −q2 0

−q1 ρ(2) 0 −q2

−q2 0 ρ(2) −q1

0 −q2 −q1 ρ(2)


. (27)

Direct solution leads to ρ
(2)
1 = q1 + q2, ρ

(2)
2 = q1 − q2, ρ(2)3 = q2 − q1, ρ(2)4 = −(q1 + q2).

Therefore, we obtain λ
(2)
1 = 0, λ

(2)
2 = −2q2, λ

(2)
3 = −2q1, λ

(2)
4 = −2(q1 + q2).
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To exploit the systematic patterns in the construction of the intensity matrices, note that

D2 =

 A2 B2

B2 A2

 with A2 =

 ρ(2) −q1

−q1 ρ(2)

 and B2 =

 −q2 0

0 −q2

 .

For symmetric, block-diagonal matrices, it holds that (cf. Gantmacher, 1974, c.II)

det(D2) = det(A2) det(A2 −B2A
−1
2 B2). (28)

Now, D2, A2, and B2 are all symmetric matrices. Recall that two matrices R and S are

called similar if there exists an invertible matrix P such that P−1SP = R. Clearly, such a

matrix exists for the similarity transformation between

A2 =

 ρ(2) −q1

−q1 ρ(2)

 and the diagonal matrix Λ2 =

 ρ(2) − q1 0

0 ρ(2) + q1

 .

Since similar matrices have the same eigenvalues, we can replace det(A2) by det(Λ2) in (28).

In fact, we can also replace A2 and its inverse by Λ2 and its inverse in the second component

of this product, A2 −B2A
−1
2 B2. Namely, if P2 is the matrix that fulfills:

Λ2 = P−12 A2P2, (29)

then performing the same operation for the second term leads to:

P−12

(
A2 −B2A

−1
2 B2

)
P2 = P−12 A2P2 − P−12 B2A

−1
2 B2P2

= Λ2 − q22IP−12 A−12 P2

= Λ2 − q22IP T2 A−12 P2

= Λ2 − q22IP2A
−1
2 P−12

= Λ2 − q22IΛ−12 ,

(30)
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where I denotes the identity matrix. In this sequence of operations, the second line makes

use of the simple diagonal structure of B2 with identical values along its diagonal. The third

line exploits the fact that A2 and A−12 are symmetric matrices and are, therefore, orthogonally

diagonalizable, so that P−12 = P T2 . The last identity follows from this fact.

With this replacement, we arrive at

det(D2) = det(Λ2) det(Λ2 − q22IΛ−12 )

= (ρ(2) − q1)(ρ(2) + q1)


 ρ(2) − q1 0

0 ρ(2) + q1

− q22
 1

ρ(2)−q1
0

0 1
ρ(2)+q1




= (ρ(2) − q1)(ρ(2) + q1)

[(
ρ(2) − q1 − q22

1

ρ(2) − q1

)(
ρ(2) + q1 − q22

1

ρ(2) + q1

)]
=
[
(ρ(2) − q1)2 − q22

] [
(ρ(2) + q1)

2 − q22
]
.

(31)

Solving the two equations we get:

ρ(2)
2 − 2q1ρ

(2) + q21 − q22 = 0 (32)

leading to ρ
(2)
1/2 = q1 ± q2, and

ρ(2)
2

+ 2q1ρ
(2) + q21 − q22 = 0 (33)

leading to ρ
(2)
3/4 = −q1 ± q2.

Since λ
(2)
i = ρ

(2)
i − q1 − q2, the four eigenvalues of the original system are: 0, −2q1, −2q2,

and −2(q1 + q2) as we had already determined via direct solution. The advantage of the second

approach to this hitherto simple problem is that it can be used to show how the set of eigenvalues

develops from stage to stage for a process of arbitrary many cascade levels k.

Moving to k = 3 it is obvious that due to the symmetry of D3, A3 and B3, it holds again

that

det(D3) = det(Λ3) det(Λ3 − q23IΛ−13 ) (34)

14



where Λ3 is the diagonal matrix with entries ρ(3) − q1 ± q2 and ρ(3) + q1 ± q2. We, therefore

get:

det(D3) = ((ρ(3) − (q1 + q2))
2 − q23)((ρ(3) − (q1 − q2))2 − q23)

((ρ(3) − (q2 − q1))2 − q23)((ρ(3) + (q1 + q2))
2 − q23)

(35)

For each of the four terms, we get two new solutions, say ρ
(3)
i,+ and ρ

(3)
i,− (i = 1, ..., 4) which

can be written in dependency on the “previous” ones as ρ
(3)
i,± = ρ

(2)
i ± q3, and, since λ

(3)
i =

ρ
(3)
i − q1 − q2 − q3 (recall that the definition of λ(k) changes from step to step in that the new

parameter qk is subtracted on the right-hand side) the new λ
(3)
i emerge as λ

(3)
i,1 = λ

(2)
i − 2q3 and

λ
(3)
i,2 = λ

(2)
i,1 .

Now moving on to the next stage, k = 4, we find the eight solutions of ρ
(3)
i , namely {q1+q2+

q3, q1 + q2− q3, q1− q2 + q3, q1− q2− q3, q2− q1 + q3, q2− q1− q3, −q1− q2 + q3, −q1− q2− q3}

appear in the diagonal of Λ4. It holds that det(D4) = det(Λ4) det(Λ4 − q24IΛ−14 ), which can be

compactly written:

det(D4) =

8∏
i=1

[(
ρ(4) − ρ(3)i

)2
− q24

]
(36)

Every ρ
(3)
i bifurcates into two ρ

(4)
i,± ± q4, and every eigenvalue λ

(3)
i bifurcates into two

λ
(4)
i,1,2 = λ

(3)
i +


−2q4

0.

(37)

Following up this development we see that the 2k eigenvalues for any arbitrary number k of

cascade steps are given by all permutations of

k∑
i=1

−2qiIi, with Ii = {0, 1}. (38)

Eigenvectors:

Now, let us determine the eigenvectors αi associated to the eigenvalues λ
(k)
i . Again, we can

obtain a closed-form solution, and we try to develop some intuition by first considering cases
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with small k. For k = 2, the four eigenvalues are λ
(2)
i = {0,−2q1,−2q2,−2(q1 + q2)}. The

pertinent eigenvectors are determined by the following systems2:



−δ q1 q2 0

q1 −δ 0 q2

q2 0 −δ q1

0 q2 q1 −δ





α
(1)
i

α
(2)
i

α
(3)
i

α
(4)
i


= 0, (39)

with δ = q1 + q2 + λ
(2)
i , and α

(j)
i the jth entry of eigenvector i.

One easily confirms that the eigenvectors for the four eigenvalues above -in their order of

appearance- are given by:

α1 =



1

1

1

1


, α2 =



1

−1

1

−1


, α3 =



1

1

−1

−1


, and α4 =



1

−1

−1

1


.

The first one for λ
(2)
1 = 0 is obvious as the vector of ones just makes each equation on the

left-hand side vanish. λ
(2)
2 = −2q1 leads to diagonal elements q1 − q2 in the coefficient matrix.

In order for every single equation to turn out zero, this now requires neighboring elements of α2

to have opposite sign. Similarly, for λ
(2)
3 = −2q2, the diagonal entries become q2 − q1. Zero is

obtained if the first and second dyadic pair have different signs. Finally, for λ
(2)
4 = −2(q1 + q2),

both each of the two entries of a dyadic pair as well as the two pairs have to have different signs.

Note that this would be achieved by first multiplying every second element (α
(2)
4 and α

(4)
4 ) by

−1, and subsequently multiplying the second dyadic pair (α
(3)
4 and α

(4)
4 ) by −1.

A glance at k = 3 suffices to show that due to the block structures of the model, this is a

general principle of construction. Eigenvectors for k = 3 are obtained via:

2To ease notation, we do not add an index for the hierarchical level k for eigenvectors.
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

−% q1 q2 0 q3 0 0 0

q1 −% 0 q2 0 q3 0 0

q2 0 −% q1 0 0 q3 0

0 q2 q1 −% 0 0 0 q3

q3 0 0 0 −% q1 q2 0

0 q3 0 0 q1 −% 0 q2

0 0 q3 0 q2 0 −% q1

0 0 0 q3 0 q2 q1 −%





α
(1)
i

α
(2)
i

α
(3)
i

α
(4)
i

·

·

·

α
(8)
i



= 0 (40)

with % = q1 + q2 + q3 + λ
(3)
i .

We quickly convince ourselves that eigenvalues and eigenvectors are as follows:

λ
(3)
1 = 0 with α1 = (1, 1, 1, 1, 1, 1, 1, 1)′

λ
(3)
2 = −2q1 with α2 = (1,−1, 1,−1, 1,−1, 1,−1)′

λ
(3)
3 = −2q2 with α3 = (1, 1,−1,−1, 1, 1,−1,−1)′

λ
(3)
4 = −2q3 with α4 = (1, 1, 1, 1,−1,−1,−1,−1)′

λ
(3)
5 = −2(q1 + q2) with α5 = (1,−1,−1, 1, 1,−1,−1, 1)′

λ
(3)
6 = −2(q1 + q3) with α6 = (1,−1, 1,−1,−1, 1,−1, 1)′

λ
(3)
7 = −2(q2 + q3) with α7 = (1, 1,−1,−1,−1,−1, 1, 1)′

λ
(3)
8 = −2(q1 + q2 + q3) with α8 = (1,−1,−1, 1,−1, 1, 1,−1)′.

With higher order addends for k > 2 the principle of construction remains the same. We,

therefore, obtain the eigenvector associated to eigenvalue λ
(k)
i as a vector consisting of −1’s and

1’s. Starting with a unitary vector of length 2k, we perform a series of multiplications, in which

its elements 2i− 2i−1 + 1 : 2i, 2 · 2i− 2i−1 + 1 : 2 · 2i, . . . , 2k−i · 2i− 2i−1 + 1 : 2k are multiplied by

−1 for all i that have non-zero values in the indicator function Ii of eq. (38) for the pertinent

eigenvalue.

Integration constants for given initial conditions:

Finally, we determine the constants A1, . . . , An in dependence on given initial conditions,

the probabilities of states 1, . . . , n (n = 2k) at time t = 0. The later are denoted by
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P1(0), P2(0), . . . , Pn(0) with
∑n

i=1 Pi(0) = 1.

For arbitrary k, at time zero, the generalization of system (13) boils down to

ϕ1(0) = P1(0) = A1α
(1)
1 +A2α

(1)
2 +A3α

(1)
3 + · · ·+Anα

(1)
n

ϕ2(0) = P2(0) = A1α
(2)
1 +A2α

(2)
2 +A3α

(2)
3 + · · ·+Anα

(2)
n

...

ϕn(0) = Pn(0) = A1α
(n)
1 +A2α

(n)
2 +A3α

(n)
3 + · · ·+Anα

(n)
n .

(41)

In matrix notation, this is compactly expressed as:

P (0) = α ·A, (42)

with P (0) = (P1(0), P2(0), . . . , Pn(0))′, A = (A1, A2, . . . , An)′, and α the matrix made up

by the eigenvectors α = [α
(j)
i ]. Solving for the vector of constants leads to:

A = α−1P (0). (43)

This requires to determine the inverse of α. Again, we can determine the structure of α−1

for any k which enables us to directly implement also this part of the solution without having to

incur the cost of solving large systems of equations over and over again in empirical applications.

We again inspect the simplest cases which easily reveal the general pattern. For developing

intuition, we start with k = 1. In this case, we easily derive that the inverse of

α =

 1 1

1 −1

 is α−1 =

 1
2

1
2

1
2 −1

2

 . (44)

This leads to:

A1 = 0.5P1(0) + 0.5P2(0) = 0.5P1(0) + 0.5(1− P1(0)) = 0.5,

A2 = 0.5P1(0)− 0.5(1− P1(0)) = P1(0)− 0.5.

Hence, for given initial conditions, we arrive at the completely determined solution for the
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time-dependent probability of both states:

ϕ1(t) = 0.5 + (P1(0)− 0.5)e−2q1t,

ϕ2(t) = 0.5− (P1(0)− 0.5)e−2q1t.

(45)

As in the more general case of two regimes with arbitrary intensities for the switching

process, the first term, 0.5, is the limiting probability of each state whereas the second term is

the transient contribution due to initial probabilities that deviate from the limiting ones.

Now we move on to k = 2. Arranging the eigenvalues and eigenvectors as in (44), we have:

α =



1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1


with inverse α−1 =



1
4

1
4

1
4

1
4

1
4 −1

4
1
4 −1

4

1
4

1
4 −1

4 −1
4

1
4 −1

4 −1
4

1
4


. (46)

The pattern of the entries α−1 suggests that the positive and negative entries of α are

mirrored in positive and negative entries of α−1. To see that this is indeed the case, define the

entries of α−1 as γ = [γij ]. We then obtain for the first column:

γ11 + γ21 + γ31 + γ41 = 1,

γ11 − γ21 + γ31 − γ41 = 0,

γ11 + γ21 − γ31 − γ41 = 0,

γ11 − γ21 − γ31 + γ41 = 0.

(47)

Clearly, this leads to γ11 = γ21 = γ31 = γ41 = 0.25. Moving to large k, we similarly obtain

one of the 2k equations being

2k∑
j=1

γj1 = 1 (48)

and the remaining 2k − 1 equations all having as many positive as negative entries on the

left-hand side and zero on the right-hand side. It follows that the first column of γ for any k is
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occupied by uniform entries 1
2k

.

Now turn to the second column for k = 2 which is determined by:

γ12 + γ22 + γ32 + γ42 = 0,

γ12 − γ22 + γ32 − γ42 = 1,

γ12 + γ22 − γ32 − γ42 = 0,

γ12 − γ22 − γ32 + γ42 = 0.

(49)

leading to γ12 = γ32 = 0.25, γ22 = γ42 = −0.25. Hence, the γij are all 0.25 in absolute

value and share the same sign, with the pertinent entries of α. Similar structures apply for

the third and forth columns leading to the pattens of eq. (46). Does this pattern also extend

to higher-dimensional cascades? First, in every column, the element on the main diagonal will

consist of an equation of the format
∑2k

j γjl = 1 in which half of all entries are positive and the

other half are negative. Second, the remaining 2k − 1 equations can be obtained from the one

for the diagonal entry by at least one of the multiplicative change of sign operations that have

been applied to obtain the eigenvectors composed of an equal number of +1′s and −1′s (except

for the first eigenvector). This will change the sign of one entry of each dyadic pair, of two out

of a group of four (in the natural order), four out of eight summands etc, and will, therefore

always lead to pairwise cancelation of the terms that in the equation for the diagonal entry have

summed up to one. Hence, the inverse of α is a matrix with entries of absolute value equal to

2−k and signs identical to those of the respective entries of α.

To complete the example of k = 2, we find, therefore, that:

A1 = 0.25, A2 = 0.25(P1(0) + P3(0)− P2(0)− P4(0)),

A3 = 0.25(P1(0) + P2(0)− P3(0)− P4(0)),

A4 = 0.25(P1(0)− P2(0)− P3(0) + P4(0)).

Inserting this together with the results for eigenvalues and eigenvectors into the equivalent

of eq. (12), we arrive at the fully specified trajectories of the state probabilities conditional on

the boundary (initial) condition P (0). Note that no numerical operations are involved at any
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point: the values of ϕ1(t), . . . , ϕn(t) can just be obtained from implementing the formula for

any requested value of t ≥ 0. Together with the solutions of θ1(x, t), . . . , θn(x, t) that also have

the format of eq. (15), i.e.

θi(x, t) =
1√

2πσit
e
− 1

2
(
x−x0
σit

)2
(50)

we obtain the shape of the transient density at any time t.

4 An illustration: Maximum likelihood estimation of the pa-

rameters of the Poisson multifractal model

Closed-form solutions of continuous-time models facilitate a number of important tasks: First,

they enable the researcher to use straightforward maximum likelihood methods for estimation

of the parameters of a hypothesized continuous-time data generating process in any application

of such processes. Second, in particular in financial economics, the pricing of derivative assets

depends on the data-generating process of the underlying and its parameters, and closed form

transitional densities for all possible expiration dates would be useful in the determination of

arbitrage-free derivative prices and related quantities. In short, having a closed-form solution

at one’s disposal, makes a large spectrum of often computation-intense approximation methods

obsolete in estimation and financial engineering. We leave the later aspect for future research,

and here confine ourselves to an illustration of straightforward ML estimation of the parameters

of the Poisson multifractal model.

Having typically data at our disposal at (equi-) distant intervals t = i M t, i = 0, ..., T , due

to the Markov property of the process, the log-likelihood assumes the form:

l(θ) =
1

T

T∑
t=1

ln(f(xt|It−1, θ) (51)

where It is information at time t and θ is the vector of parameters including the regime-

dependent parameters of the drift (absent in our case) and diffusion functions as well as the

parameters governing the intensity matrix. Note that our derivation of the closed-form solutions
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for the densities implies that the probability of a change of regime at any point in time between

two neighbouring observations has been exactly taken into account. Previous approximative

solutions to the likelihood function (51) have instead often used an analogue of the so-called

discrete-time Hamilton algorithm by decomposing the likelihood into their regime-specific parts

and discrete transition probabilities between states over the sampling interval. The parameters

of the conditional densities of the different regimes are then either assumed to depend on the

regime at time t of t − 1. Such a discretization will be inferior to the exact MC approach and

would be the more cumbersome the larger the discrete time steps between observations.

Our illustration of the ML approach based on closed form densities considers Binomial

Poisson multifractals with different numbers of hierarchical components (k = 2, 4, 8) and Bi-

nomial distributions {m0, 2 − m0} with m0 assuming values m0 = 1.25, 1.5 and 1.75. The

switching intensities are characterized by a geometric progression which we formalize by

qi = λbi−1, i = 1, ..., k. To normalize each process in a way to have an intensity of 1 for arrivals

at the component with highest frequency, we set λ = b1−k, and we let b = 2 which yields a

progression of switching frequency between states by a factor two. The following Monte Carlo

exercise uses an exact simulation algorithm inspired by the algorithm proposed by Glasserman

(2004, s.3) for simple jump processes, so that there is no discretization error in the Monte Carlo

samples (the algorithm is available in C code upon request). Estimation is performed with

sample lengths of T = 5, 000 and T = 10, 000 entries.

Table 1 shows the results. As one can see, the performance of the estimation improves when

moving from the upper left-hand side of the table to the lower right-hand side. I summarize

here the major observations:

1. The binomial parameter m0 is always estimated very precisely, without almost any bias

and expected improvement for longer samples. Higher values of m0 seem to facilitate

estimation, and higher numbers of Poisson components have initially the same effect (from

k = 2 to k = 4) while there is less difference in this respect between the specifications

k = 4 and k = 8.

2. Estimation of b and λ is somewhat problematic at the upper left-hand end of the table, i.e.

if m0 is small, and the number of Poisson components is small as well. Low m0 means little
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difference between regimes, while a small k also implies that the switches between these

regimes are relatively frequent. The estimation has, therefore, problems in distinguishing

between the constant (λ) and the level-specific part (b) of the intensities. The large mean

values for the estimates of b in the upper left corner are due to some outliers while the

median value of unity shows that the estimation cannot properly distinguish in many cases

between four regimes (k = 2) with mild heterogeneity and one regime only (which would

be the borderline solution with b = 1).

However, both an increase of m0 (leading to more pronounced heterogeneity) across regimes as

well as an increase of k (leading to a more diverse spectrum of regimes) lead to better estimates

for b and λ. Note also that in all cases the quality of all parameter estimates improves with

the length of the sample showing that all parameters can, in principle, be identified due to

the non-linearity of the model.3 Note also that, if anything, processes with more regimes (the

number of regimes is increasing in our specifications from 22 = 4 through 24 = 16 to 28 = 256)

have rather more precise estimates which is not what one would intuitively expect. This feature

appears characteristic of multifractal models and it might be due to the fact that specifications

with a higher number of regimes do not come along with a higher number of parameters. This

feature provides for a high robustness of such processes against misspecification of the number

of cascade levels and regimes.

5 Conclusion

This paper has shown how exact solutions for the transient densities of a relatively large class

of continuous-time regime-switching diffusions can be obtained. While we have only considered

univariate pure diffusions with Markov-switching regime-specific variances, mere inspection of

our results shows that the same approach would also be applicable to a large number of pro-

cesses with linear and non-linear drift functions, multivariate settings, and possibly also to

certain cases with state-dependent intensities for switches between regimes. Since closed-form

solutions facilitate estimation and applications of regime-switching processes, this availability

3Only for k = 1, would λ and b not be identified so that only their product could be estimated.

23



will release the applied researcher from having to resort to often computation-intensive approx-

imation methods for various purposes.

We have also applied this solution method to the Poisson multifractal model proposed by

Calvet and Fisher (2001) which allows for an arbitrarily high number of regimes. With a closed

form solution to the density of this process, full maximum likelihood estimation becomes feasible

which we have illustrated to work well with examples including up to 256 different volatility

regimes (but we would not expect any deterioration even for larger numbers). As far as we

can see, this is also the first approach towards parameter estimation for the continuous-time

Poisson multifractal, while previous empirical applications have concentrated on the discretized

counterpart of this model (Calvet and Fisher, 2004; Lux, 2008).
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