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Abstract

The increased use of models with limited-dependent variables has al-
lowed researchers to test important relationships in political science. Often,
however, researchers employing such models fail to acknowledge that the
violation of some basic assumptions has in part difference consequences
in nonlinear models than in linear ones. In this paper I demonstrate this
for probit models in which the dependent variable is systematically mis-
coded. Contrary to the linear model, such misclassifications affect not only
the estimate of the intercept, but also those of the other coefficients. In
a Monte-Carlo simulation I demonstrate that a model proposed by Haus-
man, Abrevaya and Scott-Morton (1998) allows for correcting these biases.
Empirical examples based on re-analyses of models explaining the occur-
rence of rebellions and civil wars demonstrate the problem that comes from
neglecting these misclassifications
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1 Introduction

Research in political science has seen a considerable increase in the use of models

with limited-dependent variables. Probit and logit models, even of the multino-

mial variety, have become the mainstay in many subfields, as have duration

models, etc. When using such nonlinear models many scholars seem to ne-

glect, however, that many problems which are inconsequential in the classical

linear regression are much more serious in the nonlinear models. For instance,

while the omission of variables in a linear regression fails to affect the estimated

effect for the included variables as long as the former are uncorrelated with

the latter, this does generally not hold in nonlinear models (see for instance

Lee, 1982; Yatchew and Griliches, 1985).1 Similarly, while in a linear model mea-

surement error in the dependent variable only affects the precision with which

the effect of our independent variables can be determined and possibly the es-

timate of the intercept, the same problem may bias our estimated effects in a

nonlinear model (see Hausman, Abrevaya and Scott-Morton, 1998; Abrevaya and

Hausman, 1999; Hausman, 2001).

Neglecting these issues in much research in political science is problematic.

Quite clearly theories in political science are hardly sufficiently developed to

guide us to completely specified empirical models to avoid the problem of mis-

specification.2 Similarly, few are the situations in which we can be sure that our

limited-dependent variable is measured without error. While the former problem

is largely linked to the theoretical level and a series of specification tests exist

for nonlinear models (see for instance Yatchew and Griliches, 1985), the latter

problem relates much more to problems of measurement at the empirical level.

In many contexts of political science research these measurement problems are,

however, quite transparent, and all the same scholars refrain from considering

them in earnest. Hence, in the present paper I discuss one particular type of

measurement problem, namely misclassification in limited-dependent models in

general and probit models in particular.

In the next section I state more formally the problem of misclassification and

provide a series of examples where such misclassification is to be expected. In

section three I discuss an estimator proposed by Hausman, Abrevaya and Scott-

1See also the more general discussion of omitted variable biases in Clarke (2005).
2? and Clarke (2005) discuss these problems in a more general context.
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Morton (1998) to address the problem of misclassification in a probit setting.

While these authors provide initial Monte Carlo simulations for their model, I

extend their work to cover a broader range of situations to offer insights on when

it is advisable to use their model to correct for misclassifications. In section

four I provide an application of the empirical model demonstrating that taking

into account misclassification may help avoid biases in our inferences in research

on minorities at risk that engage in rebellion and on civil wars. Section five

concludes.

2 Misclassifications in political science

In a classical linear regression framework miscodings and measurement error are

part and parcel of the error term of the theoretical model. Hence, to assess the

effect of miscodings and measurement error it suffices to evaluate the basic as-

sumptions of the classical linear regression model. Three of the basic assumptions

of the classical linear regression involve this error term (Ui) (e.g., Hanushek and

Jackson, 1977; Gujarati, 1995, 60-63):

• E(Ui) = 0∀i

• cov(UiXi) = 0 ∀i

• var(Ui) = σ2 ∀i

While violations of these assumptions from the classical linear regression

model carry over more or less also to models of limited-dependent variables,

violating the first one has more dramatic consequences. More precisely, while

systematic measurement error leads to an expected value of the error term dif-

ferent from zero and thus a biased estimate of the constant term, in a nonlin-

ear model, all our estimates become inconsistent (e.g., Hausman, Abrevaya and

Scott-Morton, 1998; Hausman, 2001).

Considering the type of data that is often used in political science research

in conjunction with models with limited-dependent variables, it is obvious that

misclassifications and measurement error are paramount. For instance, Hausman,

Abrevaya and Scott-Morton (1998) use as empirical example to illustrate their

estimator for misclassification a model trying to explain job changes. As they
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show with panel survey data, recall questions on job tenure often provide biased

information. Hence, models attempting to estimate the effect of various factors

on job change will be suffering from misclassification. If we compare such a rather

central question in people’s life with responses to survey questions often employed

in political science research we can be sure that the problem of misclassification

is widespread and the effects consequential.

Also in research not relying on survey data, misclassifications are likely. For

instance, research into wars in general and civil wars in particular rely on the

number of battle-deaths per year to decide whether a violent conflict is a war

(or civil war) or not. An often employed rule is to consider as war (or civil

war) a conflict with at least 1000 battle-deaths per year.3 Hence, starting from a

continuous indicator (number of battle-deaths) a dichotomous indicator is formed,

which shows whether, for instance, two countries are at war (or a county is

embroiled in a civil war). Under the hardly outlandish assumption that the

underlying continuous indicator is measured with error, there is a strictly positive

probability that a war is coded as a peaceful period or vice-versa.

Similarly and relatedly, if from a set of groups like the “minorities at risk”

(MAR) information at the level of states is generated (e.g., presence or not of

minorities), misclassifications are possible. More precisely, if the MAR data col-

lection effort might have missed some groups (e.g. Hug, 2003) and this data is

aggregated to the level of states, misclassifications will be the result.

Hence, misclassifications are very likely in much of political science research

employing models with limited-dependent variables. Whether using survey data

or data generated from continuous variables summarized in dichotomous indica-

tors, misclassifications are likely to occur.

3 A model of misclassification and Monte Carlo

simulations

To address the problem of misclassifications in a probit model, Hausman, Abre-

vaya and Scott-Morton (1998) propose an estimator that allows directly to correct

for possible misclassifications. In both Monte Carlo simulations and empirical ex-

3In research on civil wars more recent work relies on a threshold of 25 battle-deaths (e.g.
Gleditsch, Wallensteen, Eriksson, Sollenberg and Strand, 2002; Gates and Strand, 2004). Obvi-
ously, even at this lower level, measurement error is still possible, and misclassifications likely.
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amples they demonstrate how even small amounts of misclassification affect the

estimated coefficients, even if the misclassification is unrelated to any of the inde-

pendent variables.4 Their estimator relies on explicitly modeling in a probit setup

the probability of misclassification. In a simple probit-model the log-likelihood

function is simply

L(b|y, x) =
n∑

i=1

{yilnΦ(x′ib) + (1− yi)ln(1− Φ(x′ib))} (1)

where y is the observed dichotomous outcome, x a vector of explanatory vari-

ables and b the coefficients to be estimated. If a0 corresponds to the probability

that the unobserved yi = 0 is classified as a 1 and a1 corresponds to the prob-

ability that the unobserved yi = 1 is classified as a 0, Hausman, Abrevaya and

Scott-Morton (1998) derive the following log-likelihood function:

L(a0, a1, b|y, x) =
n∑

i=1

{yiln(a0 + (1− a0 − a1)Φ(x′ib))

+(1− yi)ln(1− a0 − (1− a0 − a1)Φ(x′ib))} (2)

It is easy to see that equation 2 reduces to equation 1 if a0 = a1 = 0. Maxi-

mizing equation 2 yields estimates for the coefficients b but also for the amount of

misclassification in the dataset through the values of a0 and a1. While Hausman,

Abrevaya and Scott-Morton (1998) report estimates for a model employing this

setup, they also suggest that both a0 and a1 may depend on some exogenous

variables:

a0 = f(z0)

a1 = f(z1) (3)

As for the estimates of a0 and a1 in Hausman, Abrevaya and Scott-Morton’s

(1998) original formulation (equation 1), constraints need to be set such that these

values remain in the interval [0, 1]. As with regression models with dichotomous

4See Hausman (2001) for a more general discussion of mismeasured variables.
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variables, the most convenient specification is either the logit transformation or

the cumulative density function of the normal curve.5

What is also readily transparent is that the identification of the parameters

to be estimated is only secured through the assumed functional form. More

precisely, estimating the two additional parameters in equation 2 is only possible

because they enter additively to then multiply the expression with the cumulative

normal density. The same holds if as specified in equations 3 the misclassification

probabilities are a function of an exogenous variable z. This variable may easily

be part of the vector of explanatory variables of the probit model x, but again

the parameters associated with equations 3 can only be estimated because the

functional form differs from the way in which these explanatory variables affect

the likelihood y = 1.

Despite this limitation Hausman, Abrevaya and Scott-Morton (1998) report

encouraging results from Monte-Carlo simulations demonstrating that the pro-

posed estimator performs much better than simple probit estimations in presence

of misclassification. The equation they employ to generate the simulated dataset

is the following:

y = −1 + 0.2× x1 + 1.5× x2 − 0.6× x3 + ε

yo = 1 if y > 0

yo = 0 else (4)

x1 and ε are drawn from a normal distribution with mean 0 and variance

1, while x2 and x3 are random draws from a uniform distribution over the unit

interval. A certain percentage, namely 2, 5, or 20 percent of the observed yo

(both 0s and 1s) were then randomly recoded. The simulations performed by

Hausman, Abrevaya and Scott-Morton (1998) with a sample of 5000 observations

then clearly show that the estimated coefficients taking into account the problem

of missclassification come much closer to the true values.

Since these Monte-Carlo simulations are limited in several ways, I extend these

simulations by using exactly the same setup as shown in equation 4. First, I car-

ried out the Monte-Carlo simulations for smaller datasets, namely for samples of

5Below I also use the absolute value of the estimated parameter to ensure positive values.
This, however, only works if no explanatory variables are used to explain the probability of
misclassification.
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1000, 2000, 3000, 4000, and 5000 observations. Second, while Hausman, Abre-

vaya and Scott-Morton (1998) kept the amount of missclassifications for both

types at the same level in their simulations and only estimated one coefficient, I

allow both coefficients in equation 2 to take on the three values reported above

and in addition the value 0. For each possible permutation I then estimated the

model both under the assumption that a0 = a1 and under the assumption that

a0 6= a1. Finally, since the proposed estimator also allows the amount of mis-

classification to depend on exogenous variables, I also carried out Monte-Carlo

simulations with a0 = f(z0) and a1 = f(z1).
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Figure 1 reports the first set of results for the simulations in which the two

probabilities of misclassification a0 and a1 are set equal to each other and only

one probability of misclassification is estimated.6 For each estimated coefficient

(see the four columns in figure 1) I depict the root of the mean-squared error

(rmse)7 both for a simple probit and the model proposed by Hausman, Abrevaya

and Scott-Morton (1998). The rows in figure 1 correspond to the four different

levels of misclassification assumed, namely 0, 0.02, 0.05 and 0.2. Not surprisingly,

the rmses increase when we move from the upper to the lower rows in figure 1.

At the same time the rmses of the model proposed by Hausman, Abrevaya and

Scott-Morton (1998) become comparatively speaking better than the ones of the

probit model. The various panels show also, however, that more generally the

Hausman, Abrevaya and Scott-Morton’s (1998) model becomes preferable to the

simple probit model if the probability of misclassification is at least 0.05 (third

and fourth row of panels in figure 1). Then, however, whether the rmses of

the probit model is higher or not depends on the sample size and the coefficient

considered. Interestingly enough, while the rmse of the intercept (b0) and b2 are

systematically the largest, it is especially for the estimates of b1 and b3 that the

correction proposed by Hausman, Abrevaya and Scott-Morton (1998) is a clear

improvement, even for smaller sample sizes of 2000 observations or more.

To assess the sensitivity of this estimator to other sets of probabilities of

misclassifications I carried out Monte Carlo simulations for all possible combi-

nations of the four values for a0 and a1. In almost all cases, when at least one

of the two probabilities is at least 0.05, the rmses, especially for larger sample

sizes, are smaller for the constant term as estimated by the Hausman, Abrevaya

and Scott-Morton (1998) than the one estimated by probit.8 The advantage of

this estimator becomes even more obvious if we look at cases where one of the

misclassification probabilities, namely a1, is equal to 0.2 (see figure 2).

6Estimating this model is not as straightforward as it seems, given that the parameters are
only identified through the functional form. Convergence in the maximum likelihood estima-
tions depends strongly on the starting values and is often difficult to achieve. While for all
settings of the parameters 1000 datasets were drawn, the results presented here rely only on
the set of estimations which converged. In the appendix I provide more details on the number
of replications and the simulation results in general.

7The mean squared error is simply the variance of the estimated coefficient plus its bias
squarred.

8Given that this result is of lesser significance I refrain from reporting it in more detail
graphically, here.
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What is striking in the results depicted in figure 2 is that for two estimated

coefficients, namely b1 and b3, independent of the sample size the rmse for Haus-

man, Abrevaya and Scott-Morton’s (1998) estimator is systematically smaller

than the one for the probit estimator. On the other hand this is never the case

for the rmses for the constant b0 and only for larger sample sizes for the remaining

slope coefficient (b2). This suggests that if at least one type of misclassification

is rather important, then even estimating a model where it is assumed that both

probabilities are equal can yield less biased estimates even in smaller samples.

Resorting to the exact same setup, namely letting vary the two probabilities

of misclassification independently from each other across the four selected values,

I estimated models where both probabilities were coefficients. If the two proba-

bilities are identical, the rmses for all coefficients from the probit estimates are

systematically lower for the sample sizes considered in the Monte Carlo simula-

tions. If the two misclassification probabilities differ from each other, the rmses

of Hausman, Abrevaya and Scott-Morton’s (1998) estimator (mostly of the con-

stant) beats the one of the probit model for large sample sizes as long as at least

one of the probabilities exceeds the value of 0.02.9

To assess the estimator’s performance when the probability of misclassification

depends on an explanatory variable I used the following setup for either of the

two probabilities:

a. = aa × (0.5 + x1) + θ (5)

where aa varied across the four values above and θ was drawn from N(0, 1).10

9Given that these results are substantially less interesting I refrain from reporting them in
detail here.

10Strictly speaking, this setup does not guarantee that a. ∈ [0, 1], but the way in which the
Monte Carlo simulations are set up, this fails to have an impact since values below or above
the boundaries of the unit interval are implicitly brought to the closest boundary value.
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The various panels in figure 3 report the results for the cases where a0 depends

on x1 as specificed in equation 5, and aa takes on the three values used above,

while aa for a1 is equal to 0. The results depicted in figure 4 are generated in

the same fashion, but with a0 and a1 inversed. It is apparent in both figures that

already with 5 percent misclassification the rmses of Hausman, Abrevaya and

Scott-Morton’s (1998) estimator for some coefficients beats the ones of the simple

probit model. If the amount of misclassification is rather large, the differences

become even quite large and appear even for smaller sample sizes. Hence, even for

many situations where we expect the probability of misclassification to depend

on exogenous variables Hausman, Abrevaya and Scott-Morton’s (1998) estimator

provides improved estimates.

4 Empirical examples

To illustrate the performance of Hausman, Abrevaya and Scott-Morton’s (1998)

proposed estimator, I employ it on two studies dealing with rebellions and civil

wars. The first study by Regan and Norton (2005) proposes an empirical model

to assess how various factors influence the outbreak of protest, rebellions and

civil wars. To test this empirical model they employ the “minorities at risk” data

(MAR) (Gurr, 1993), aggregate it, however, to the level of country-years. More

precisely, they create a summary indicator for each minority based on variables

measuring protest and rebellious behavior in the MAR data,11 and based on this

code whether a minority is engaged in demonstrations, rebellions or a civil war.

Aggregating this to the country level allows the authors to have a dichotomous

indicator for each county-year showing whether a protest, rebellion, or civil war

had occurred or not. As explanatory variables Regan and Norton (2005) use dis-

crimination, political repression (lagged), extractable resources, per capita GDP,

population size, regime type, and ethnolinguistic fractionalization. To account

for possible time-dependencies, the authors follow Beck, Katz and Tucker (1998)

and use cubic-splies as well as a counter for the number of years since the last

event.12

11Regan and Norton (2005, 327) give detailed instructions on how they constructed this
summary indicator as well as their three dichotomous variables for protest, rebellions, and civil
war.

12Employing both a time-counter and cubic-splies is not exactly common practice, but since
Regan and Norton (2005) employ it in their work, I follow their example.
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While Regan and Norton (2005) estimate their model as a logit, I report the

results of a probit model in column 1 of table 1 for the onset of a rebellion.13

Substantively the results obviously fail to differ. Discrimination, per capita GDP,

the log of the population size and ethnolinguistic fragmentation positively and

statistically significantly affect the outbreak of rebellions. Repression decreases

the probability of such an outbreak, though not statistically significantly, while

the effect of democracy, as measured by the Polity IV scale, is curvilinear and

statistically significant.

Table 1: Misclassification: Regan and Norton (2005)
(1) (2) (3) (4) (4)

probit probit probit probit probit
b b b b b

variables (s.e) (s.e.) (s.e.) (s.e.) (s.e.)
discrimination 0.267 0.323 0.276 0.329 0.519

(0.026) (0.039) (0.027) (0.035) (0.076)
per capita GDP 0.251 0.512 0.277 0.276 0.451

(0.054) (0.090) (0.059) (0.066) (0.145)
lagged political repression -0.024 -0.088 -0.026 -0.070 -0.235

(0.041) (0.059) (0.043) (0.050) (0.094)
extractable ressources 0.069 0.017 0.052 0.106 0.198

(0.087) (0.123) (0.093) (0.106) (0.204)
log population size 0.134 0.199 0.145 0.168 0.351

(0.027) (0.041) (0.029) (0.036) (0.081)
Polity IV democracy scale 0.17 0.289 0.189 0.203 0.382

(0.033) (0.050) (0.035) (0.039) (0.081)
Polity IV democracy scale2 -0.007 -0.012 -0.007 -0.008 -0.015

(0.002) (0.002) (0.002) (0.002) (0.004)
ethnolinguistic fragmentation 0.004 0.005 0.003 0.005 0.007

(0.001) (0.002) (0.002) (0.002) (0.004)
peaceyears 0.087 0.308 0.106 0.124 0.724

(0.008) (0.038) (0.011) (0.012) (0.101)
spline1 0.012 0.024 0.013 0.014 0.044

(0.001) (0.003) (0.001) (0.002) (0.006)
spline2 -0.013 -0.024 -0.014 -0.016 -0.041

(0.002) (0.003) (0.002) (0.002) (0.006)
spline3 0.008 0.013 0.008 0.009 0.021

(0.002) (0.002) (0.002) (0.002) (0.004)
constant -5.671 -9.622 -6.192 -6.390 -12.278

(0.613) (1.158) (0.684) (0.740) (1.740)
|a0| = |a1| 0.044

(0.008)
|a0| 0.010 0.027

(0.005) (0.005)
|a1| 0.157 0.272

(0.044) (0.029)
log-likelihood -766.624 -736.319 -761.547 -755.041 -697.530
n 2019 2019 2019 2019 2019

When allowing for the possibility of misclassification but assuming that the

13I estimated the same models also for the two other dependent variables used by Regan and
Norton (2005), but refrain from reporting these results here. The reason for this omission is
that the results reported here are the most illustrative for the effect of misclassification.

15



two probabilities take the same value (column 2 table 1), I find a sizeable proba-

bility of misclassification of 0.044.14 The other estimated coefficients of the model

also undergo some changes. These fail, however, to affect the substantive conclu-

sions reached by Regan and Norton (2005). The most interesting changes are the

doubling of the size of the coefficient for GDP per capita and the quadrupling

of the coefficient for repression. The latter effect, given that the standard error

increases less dramatically, almost reaches statistical significant.

As seen in the Monte Carlo simulations, estimating an identical probability

of misclassification, even if the probabilites differ, is often advisable. Here, how-

ever, I also wish to check what happens if individual probabilities are estimated

separately (columns 3 and 4 in table 1) or jointly (column 5 in table 1). In the

case where only the probability that a peaceful year is miscoded as a year with

a rebellion, this estimated probability is quite small, namely 0.01. As the Monte

Carlo simulations suggested, with such small probabilities the efficiency gain of

the Hausman, Abrevaya and Scott-Morton (1998) estimator is very small if ex-

istent at all. Hence, it hardly surprises that the changes in the estimates are

vanishingly small and in no case affect the substantive conclusions. The proba-

bility that a year with a rebellion was miscoded as a peaceful year is considerably

larger (column 4 in table 1), namely 0.157. Not surprisingly, several estimated

coefficients for the substantively interesting variables approach the ones reported

in column 2. Hence, again the effect of repression appears stronger and almost

reaches statistical significance.

Finally, if both probabilities of misclassification are estimated separately in

the same model (column 5 in table 1), I find still stronger changes. First of

all, the two probabilities of misclassification are quite sizeable with the second

one reaching 0.272. With regard to the coefficients for the substantive variables,

quite a few notable changes appear. Discrimination appears to have a much

strengthened effect when misclassification is taken into account, as is the case for

the effect of per capita GDP. While in the original model the effect of political

repression failed to reach statistical significance, this is no longer the case if

misclassification is accounted for. Reversely, while the effect of ethnolinguistic

fragmentation had a statistically significant effect in the original model, this is no

14For this estimation I used as specification the absolute value of the parameter to constrain
the parameter to strictly positive values. In this particular instance this estimation strategy
performed reasonably well.
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longer the case when misclassification is considered. On the other hand the effect

of discrimination is considerably strengthened, while the curvilinear relationship

of the POLITY IV democracy scale is reduced. Hence, simply by accounting for

the possibility of misclassifications in the dependent variable, some of the results

of Regan and Norton’s (2005) analysis are either strengthened or substantively

changed. Quite clearly, then, accounting for misclassification is of considerable

importance.

To illustrate the way in which explanatory variables for misclassification may

affect results of empirical analyses I turn to the second example. Fearon and

Laitin (2003) assess in a simple empirical model, how various explanatory factors

contribute to explaining the onset of civil wars. For this they create a data-set

where each observation corresponds to a country-year and the dependent variable

takes the value of 1 if a civil war starts in a particular year.15 As civil war is

coded a violent conflict inside a state in which at least 1000 battle-deaths are

deplored in one year. In table 2 (column 1) I first report a replication of Fearon

and Laitin’s (2003) base-model, which they estimate as a logit model, estimated

as a probit model and with slightly updated data.16

In columns 2 and 3 of table 2 I report the results of estimations where one

of the probabilities of misclassification is estimated with a single paramater of

the cumulative normal density function. For both types of misclassification the

estimated parameter is negative and quite large, which indicates that the proba-

bility of both types of misclassification is quite small (0.000000220905 respectively

0.0000607697).17

15Country-years in which a civil war is coded as ongoing are dropped from the analysis.
16I wish to thank James Fearon for making available this updated dataset with a few changes

in the codings of some civil wars. The results hardly differ and no substantive conclusion is
affected.

17These tiny probabilities combined with the fact that the likelihood function is actually
smaller for the models reported in columns 2 and 3, compared to the model in column 1
suggests that the probability of missclassification is actually 0. This conjecture is confirmed
if the misclassification parameter is not estimated as cumulative normal distribution but as
absolute value. The estimated value is zero, but given this, the Hessian cannot be inverted.
For this reason I refrain from reporting these results here.
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Table 2: Misclassification: Fearon and Laitin (2003), updated data

(1) (2) (3) (4) (5) (6) (7) (8)
probit probit probit probit probit probit probit probit

b b b b b b b b
variables (s.e) (s.e) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.)
Prior war -0.373 -0.339 -0.339 -0.395 -0.465 -0.601 -0.450 -0.525

(0.129) (0.126) (0.126) (0.141) (0.167) (0.255) (0.138) (0.171)
Per capita incomet−1 -0.135 -0.131 -0.131 -0.129 0.073 0.272 -0.101 0.067

(0.028) (0.028) (0.028) (0.028) (0.091) (0.135) (0.032) (0.091)
log(population) 0.102 0.101 0.101 0.102 0.124 0.201 0.111 0.133

(0.031) (0.031) (0.031) (0.032) (0.041) (0.072) (0.035) (0.042)
log(mountainous 0.084 0.088 0.088 0.081 0.097 0.210 0.088 0.098
terrain) (0.034) (0.034) (0.034) (0.035) (0.042) (0.093) (0.037) (0.044)
Noncontiguous 0.210 0.200 0.199 0.223 0.290 0.391 0.405 0.515
state (0.120) (0.120) (0.120) (0.124) (0.165) (0.220) (0.163) (0.217)
Oil exporter 0.335 0.321 0.321 0.337 0.362 0.605 0.228 0.192

(0.123) (0.123) (0.123) (0.125) (0.167) (0.241) (0.137) (0.175)
New state 0.747 0.747 0.747 0.750 0.881 1.321 0.727 0.818

(0.163) (0.163) (0.163) (0.165) (0.235) (0.377) (0.172) (0.223)
Instability 0.260 0.251 0.251 0.233 0.334 0.482 0.273 0.336

(0.101) (0.101) (0.101) (0.110) (0.133) (0.227) (0.106) (0.134)
Democracy 0.007 0.006 0.006 0.008 0.008 0.012 0.009 0.009
(Polity) (0.007) (0.007) (0.007) (0.007) (0.009) (0.013) (0.008) (0.009)
Ethnic 0.109 0.128 0.129 0.148 0.126 0.207 0.021 0.037
fractionalization (0.157) (0.156) (0.156) (0.167) (0.191) (0.326) (0.173) (0.210)
Religious 0.091 0.072 0.070 0.008 0.149 0.453 -0.031 0.025
fractionalization (0.207) (0.206) (0.209) (0.336) (0.257) (0.462) (0.216) (0.282)
constant -3.150 -3.151 -3.150 -3.142 -3.287 -5.235 -3.105 -3.310

(0.301) (0.300) (0.300) (0.320) (0.390) (1.078) (0.330) (0.406)
Φ(a0) -4.869 -1.172 -1.926

(14.817) (0.849) (0.177)
Per capita income -4.243 -0.347

(5.303) (0.180)
Φ(a1) -4.299 -0.251 -0.472 1.185 0.615

(105.654) (0.668) (0.712) (0.517) (0.683)
Per capita income 0.335 0.406 0.284

(0.088) (0.101) (0.093)
Eastern -1.277 -0.592
Europe (0.659) (0.452)

Latin -1.570 -0.651
America (0.685) (0.442)

Subsahara -4.716 -1.159
Africa (24.916) (0.682)

Asia -1.853 -0.691
(0.702) (0.436)

Northafrica -4.293 -1.199
Middle East (25.594) (0.611)

log-likelihood -486.231 -491.229 -491.228 -485.153 -482.951 -478.831 -481.841 -479.186
χ2 model 1 -9.995 -9.994 2.156 6.561 14.800 8.781 14.090
df 1 1 2 2 4 6 7
p 0.340 0.038 0.005 0.186 0.050
χ2 model 3 16.555 18.775 24.084
df 1 5 6
p 0 0.002 0.001
χ2 model 5 8.239 7.529
df 2 4
p 0.016 0.110
n 6327 6327 6327 6327 6327 6327 6327 6327

Despite these small probabilites it might be the case that some systematic
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features explain the probability of misclassification. To assess this I allow the

probability of misclassification to depend on the GDP per capita. The argument

for this is that reports on battle-deaths, which are used to determine whether a

civil war occurs or not, are likely to be much more imprecise in poor countries than

in rich ones. In column 4 the results appear for a model where the probability of

a peaceful year to be miscoded as a year of civil-war onset is allowed to vary. The

estimates suggest that this probability of misclassification decreases with higher

GDPs, but this effect fails to reach statistical significance. A likelihood ratio test

comparing this model to the one estimated by Fearon and Laitin (2003), confirms,

that we cannot maintain the hypotheses that this probability of misclassification

is related to the GDP and different from 0. When I allow the other probability

of misclassification to vary as a function of GDP per capita, however, I find a

statistically significant effect both for the estimated coefficient and the likelihood

ratio test. The effect of GDP per capita is, however, counterintuitively positive.

One explanation for this might be, that reports from poorer countries on battle-

deaths are much more imprecise and exaggerate the number of casualties.

If I allow both probabilities of misclassification to vary with GDP per capita,

both estimated coefficients for the latter variable are statistically significant.

Their substantive effect remains, however, the same. In these two latter mod-

els the estimated coefficients of some of substantive variables also undergo some

changes. The most notable, not completely unexpected, is the effect of the lagged

GDP, which turns from negative to positive.18

As the previous analyses suggested, it is mostly the probability of misclassi-

fying a civil war onset as a peaceful year that seems to matter, I propose two last

models where this probability depends on the region to which a country belongs.

Using as omitted category Western Europe, I estimate the effect of five dichoto-

mous indicators on the misclassification probability. Contrary to expectation,

all of these estimated coefficients are negative, suggesting that the probability of

misclassification is highest in countries of Western Europe (column 7). Not sur-

prisingly, when controlling in addition for GDP, these differences decrease quite

dramatically. While the individual estimates for the various dichotomous indica-

18These results illustrate the limitation of the model, since the parameters are identified only
through the assumed functional form. Given that the underlying theoretical model is hardly
solidly specified, it remains debatable whether GDP per capita affects civil war onset or the
likelihood of misclassification.
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tors are quite imprecise, jointly they reach statistical significance as the likelihood

ratio test shows. The substantively interesting results in these last two models is

that the economic indicators loose much of their explanatory power. In the very

last model GDP as no longer a statistically significant effect on civil war onset,

and the same holds in the last two models for whether a country exports oil or

not. While the diminished effect of GDP is certainly linked to the fact that its

unlagged value appears as explanatory variable for the probability of misclassifi-

cation, the results certainly question the predominance of economic variables in

explaining civil war onsets.

5 Conclusion

Too often researchers in political science employing models for limited-dependent

variables fail to acknowledge that violations of assumptions that are rather in-

nocuous in the classical linear regression model may have much more dramatic

effects. It is (should be) well known that the effect of omitted variables is quite

different in nonlinear models than in linear ones. Similarly, measurement error, or

misclassification in limited-dependent variables affect in most cases all estimated

coefficients, even in the most innocuously looking cases.

In this paper I discussed various cases in which we would expect misclassifica-

tions and presented a model proposed by Hausman, Abrevaya and Scott-Morton

(1998) which allows to address this problem in probit models. In Monte Carlo

simulations I was able to demonstrate that, provided that a researcher works with

a sizeable sample, the corrections proposed by Hausman, Abrevaya and Scott-

Morton (1998) clearly outperform a simple probit estimation. This even holds

if the amount of misclassification is rather limited. Similarly, the Monte Carlo

simulations suggest that even if the two possible probabilities of misclassification

differ, a joint estimation under the assumption that they are equal is often an

improvement over probit estimates. The same also holds for situations where we

expect exogenous variables to affect the likelihood of misclassification.

I illustrated the estimator discussed in two empirical examples related to

rebellions and civil wars. In both cases addressing the issue of possible misclassi-

fication suggested that systematic measurement seems present in both cases. In

addition, the corrections changed some of the substantive results of the original

analyses. Combined with the insights from the Monte Carlo study this suggests
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that researchers should pay much more attention to this potential problem. As

I noted in the paper, in many areas where political scientists employ models for

limited-dependent variables, misclassifications are very likely.
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Appendix

In table 3 I report the descriptive statistics for the example based on Regan and

Norton (2005), while table 4 does the same for the analysis based on Fearon

and Laitin (2003). Tables 5-9 report the results of the Monte Carlo simulations

(rmses) on which the figures in the main text are based.

Table 3: Descriptive statistics for reanalyses of Regan and Norton (2005)

Variable Min Mean Max Std. Dev. n
Rebellion 0 0.245 1 0.430 2019
Discrimination 0 1.970 4 1.702 2019
Per capita income 5.737 8.107 9.771 0.861 2019
Repressiont−1 1 2.383 9 1.147 2019
Extractables 0 0.288 1 0.453 2019
Log population 12.319 16.169 20.918 1.464 2019
Democracy 0 10.752 20 7.712 2019
Democracy2 0 175.076 400 169.639 2019
Ethnolinguistic fractionalization 1 42.631 93 29.039 2019

Table 4: Descriptive statistics Fearon and Laitin (2003)

Variable Min Mean Max Std. dev. n
Civil War onset 0 0.02 1 0.13 6610
Prior war 0 0.14 1 0.34 6610
Per capita incomet−1 0.05 3.65 66.74 4.54 6373
log(population) 5.40 9.05 14.03 1.46 6585
log(% mountainous terrain) 0 2.18 4.56 1.40 6610
Noncontiguous state 0 0.17 1 0.38 6610
Oil exporter 0 0.13 1 0.34 6610
New state 0 0.03 1 0.17 6610
Instability 0 0.15 1 0.35 6596
Democracy (Polity) -10 -0.48 10 7.51 6541
Ethnic fractionalization 0 0.39 0.93 0.29 6610
Religious fractionalization 0 0.37 0.78 0.22 6610
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Table 5: RMSE for estimates under the assumption a0 = a1

1000 2000 3000 4000 5000
Hausman probit Hausman probit Hausman probit Hausman probit Hausman probit

a1 = a0 = 0
n 463 467 493 463 483
b0 0.660 0.123 0.249 0.083 0.177 0.069 0.135 0.059 0.120 0.055
b1 0.066 0.045 0.046 0.031 0.038 0.027 0.031 0.022 0.028 0.020
b2 0.722 0.114 0.305 0.073 0.224 0.062 0.172 0.055 0.151 0.050
b3 0.216 0.158 0.155 0.111 0.127 0.091 0.109 0.083 0.093 0.072
a1 = a0 0.164 0.171 0.178 0.181 0.183

a0 = 0.0, a1 = 0.02
n 426 446 441 427 435
b0 0.729 0.119 0.244 0.087 0.172 0.072 0.160 0.060 0.142 0.057
b1 0.061 0.044 0.044 0.032 0.033 0.026 0.030 0.023 0.024 0.020
b2 0.769 0.104 0.268 0.080 0.178 0.066 0.167 0.054 0.146 0.050
b3 0.220 0.156 0.138 0.107 0.114 0.093 0.091 0.078 0.089 0.074
a1 = a0 0.165 0.173 0.178 0.181 0.182

a0 = 0.0, a1 = 0.05
n 413 401 404 389 408
b0 0.716 0.119 0.332 0.094 0.215 0.082 0.181 0.080 0.160 0.068
b1 0.060 0.044 0.039 0.031 0.032 0.028 0.025 0.024 0.024 0.022
b2 0.718 0.117 0.319 0.087 0.182 0.075 0.143 0.069 0.119 0.069
b3 0.200 0.156 0.136 0.116 0.101 0.091 0.090 0.085 0.077 0.076
a1 = a0 0.163 0.172 0.178 0.182 0.183

a0 = 0.0, a1 = 0.2
n 328 305 258 235 207
b0 0.944 0.220 0.384 0.197 0.318 0.186 0.286 0.186 0.279 0.182
b1 0.054 0.059 0.042 0.049 0.040 0.048 0.038 0.045 0.034 0.041
b2 0.790 0.210 0.175 0.202 0.147 0.191 0.132 0.184 0.120 0.183
b3 0.197 0.198 0.137 0.157 0.119 0.135 0.116 0.132 0.112 0.131
a1 = a0 0.168 0.177 0.182 0.186 0.185

a0 = 0.02, a1 = 0.0
n 568 646 705 739 743
b0 0.848 0.147 0.371 0.119 0.179 0.108 0.144 0.103 0.129 0.103
b1 0.077 0.048 0.051 0.031 0.041 0.027 0.035 0.024 0.033 0.021
b2 0.919 0.134 0.434 0.108 0.250 0.098 0.206 0.090 0.190 0.092
b3 0.240 0.156 0.159 0.109 0.130 0.087 0.116 0.081 0.109 0.077
a1 = a0 0.149 0.157 0.163 0.167 0.167

a1 = a0 = 0.02
n 574 621 669 691 725
b0 0.810 0.137 0.284 0.111 0.187 0.097 0.157 0.091 0.134 0.088
b1 0.074 0.048 0.048 0.033 0.037 0.028 0.033 0.026 0.028 0.023
b2 0.874 0.144 0.336 0.125 0.232 0.113 0.192 0.112 0.166 0.110
b3 0.245 0.157 0.160 0.111 0.128 0.092 0.104 0.087 0.093 0.078
a1 = a0 0.149 0.159 0.165 0.167 0.170

a0 = 0.02, a1 = 0.05
n 589 603 613 657 682
b0 0.952 0.118 0.309 0.092 0.195 0.079 0.154 0.077 0.131 0.073
b1 0.065 0.048 0.042 0.039 0.034 0.033 0.028 0.028 0.025 0.027
b2 0.988 0.165 0.322 0.150 0.195 0.142 0.158 0.140 0.130 0.140
b3 0.209 0.160 0.141 0.120 0.115 0.111 0.097 0.091 0.081 0.085
a1 = a0 0.149 0.162 0.166 0.170 0.171

a0 = 0.02, a1 = 0.2
n 483 460 460 488 481
b0 1.070 0.148 0.646 0.109 0.356 0.101 0.242 0.092 0.221 0.086
b1 0.057 0.065 0.043 0.055 0.041 0.053 0.040 0.051 0.040 0.051
b2 0.928 0.294 0.554 0.285 0.257 0.282 0.185 0.281 0.183 0.283
b3 0.200 0.214 0.148 0.175 0.137 0.171 0.134 0.164 0.127 0.158
a1 = a0 0.156 0.166 0.170 0.175 0.177
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Table 6: RMSE for estimates under the assumption a0 = a1

1000 2000 3000 4000 5000
Hausman probit Hausman probit Hausman probit Hausman probit Hausman probit

a0 = 0.05, a1 = 0.0
n 717 795 847 893 918
b0 0.922 0.229 0.420 0.213 0.193 0.210 0.166 0.213 0.143 0.209
b1 0.093 0.048 0.064 0.037 0.049 0.033 0.045 0.030 0.039 0.028
b2 1.056 0.201 0.523 0.190 0.305 0.187 0.267 0.185 0.238 0.183
b3 0.284 0.157 0.191 0.124 0.162 0.108 0.147 0.097 0.132 0.089
a1 = a0 0.129 0.135 0.141 0.142 0.144

a0 = 0.05, a1 = 0.02
n 714 772 844 874 907
b0 0.974 0.218 0.327 0.206 0.189 0.197 0.157 0.197 0.151 0.193
b1 0.078 0.051 0.056 0.039 0.046 0.035 0.038 0.034 0.036 0.031
b2 1.074 0.228 0.416 0.209 0.271 0.206 0.238 0.204 0.218 0.207
b3 0.261 0.168 0.181 0.124 0.143 0.114 0.132 0.100 0.109 0.100
a1 = a0 0.129 0.138 0.143 0.143 0.146

a1 = a0 = 0.05
n 677 774 816 850 871
b0 0.990 0.198 0.364 0.178 0.205 0.174 0.187 0.172 0.147 0.174
b1 0.076 0.055 0.050 0.043 0.039 0.040 0.036 0.038 0.031 0.037
b2 1.049 0.253 0.407 0.244 0.254 0.235 0.230 0.237 0.182 0.240
b3 0.241 0.179 0.160 0.148 0.135 0.128 0.115 0.123 0.099 0.116
a1 = a0 0.131 0.140 0.144 0.146 0.150

a0 = 0.05, a1 = 0.2
n 580 601 659 713 725
b0 1.130 0.129 0.605 0.094 0.320 0.088 0.225 0.082 0.207 0.077
b1 0.064 0.075 0.047 0.066 0.046 0.065 0.043 0.062 0.044 0.063
b2 1.025 0.402 0.531 0.395 0.293 0.397 0.240 0.395 0.230 0.395
b3 0.215 0.225 0.165 0.213 0.147 0.198 0.136 0.188 0.132 0.188
a1 = a0 0.137 0.144 0.153 0.156 0.157

a0 = 0.2, a1 = 0.0
n 723 827 898 919 951
b0 1.410 0.635 0.744 0.632 0.619 0.630 0.470 0.629 0.375 0.631
b1 0.345 0.073 0.189 0.065 0.165 0.063 0.146 0.062 0.138 0.062
b2 2.341 0.498 1.240 0.500 1.022 0.495 0.806 0.494 0.681 0.496
b3 1.347 0.222 0.627 0.207 0.526 0.194 0.457 0.190 0.431 0.188
a1 = a0 0.065 0.060 0.057 0.054 0.052

a0 = 0.2, a1 = 0.02
n 777 861 908 946 964
b0 1.542 0.619 0.689 0.619 0.527 0.621 0.438 0.622 0.379 0.620
b1 0.303 0.076 0.185 0.071 0.166 0.067 0.144 0.068 0.137 0.065
b2 2.280 0.525 1.198 0.520 0.966 0.523 0.814 0.525 0.710 0.523
b3 0.955 0.243 0.622 0.213 0.513 0.207 0.466 0.204 0.432 0.201
a1 = a0 0.064 0.063 0.055 0.054 0.049

a0 = 0.2, a1 = 0.05
n 800 879 928 964 973
b0 1.484 0.604 0.919 0.604 0.598 0.602 0.394 0.602 0.396 0.601
b1 0.331 0.082 0.191 0.075 0.146 0.074 0.136 0.073 0.126 0.072
b2 2.295 0.564 1.419 0.563 0.981 0.563 0.767 0.564 0.727 0.563
b3 1.009 0.250 0.603 0.231 0.466 0.227 0.421 0.223 0.389 0.221
a1 = a0 0.064 0.059 0.054 0.049 0.047

a1 = a0 = 0.2
n 729 841 892 936 957
b0 1.791 0.524 1.108 0.516 0.829 0.514 0.541 0.515 0.465 0.511
b1 0.128 0.107 0.085 0.104 0.067 0.103 0.060 0.102 0.055 0.101
b2 1.884 0.751 1.183 0.746 0.901 0.744 0.606 0.744 0.532 0.745
b3 0.376 0.324 0.261 0.312 0.212 0.309 0.185 0.305 0.172 0.307
a1 = a0 0.065 0.059 0.060 0.052 0.051
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Table 7: RMSE for estimates under the assumption a0 6= a1

1000 2000 3000 4000 5000
Hausman probit Hausman probit Hausman probit Hausman probit Hausman probit

a0 = a1 = 0.0
n 368 401 381 388 386
b0 0.947 0.113 0.382 0.086 0.165 0.066 0.133 0.059 0.119 0.056
b1 0.229 0.044 0.134 0.032 0.113 0.027 0.090 0.022 0.081 0.019
b2 1.495 0.104 0.735 0.082 0.534 0.062 0.450 0.055 0.406 0.048
b3 0.793 0.144 0.427 0.114 0.340 0.086 0.276 0.076 0.239 0.069
a0 0.054 0.042 0.036 0.031 0.029
a1 0.228 0.187 0.172 0.153 0.146

a0 = 0.0, a1 = 0.02
n 378 361 391 396 406
b0 0.956 0.111 0.291 0.083 0.175 0.066 0.150 0.062 0.124 0.060
b1 0.254 0.045 0.141 0.031 0.109 0.026 0.091 0.022 0.086 0.019
b2 1.754 0.103 0.738 0.074 0.531 0.062 0.455 0.060 0.423 0.048
b3 1.078 0.156 0.481 0.105 0.332 0.088 0.274 0.078 0.253 0.070
a0 0.054 0.040 0.036 0.033 0.029
a1 0.221 0.189 0.171 0.151 0.147

a0 = 0, a1 = 0.05
n 381 425 397 412 434
b0 0.924 0.130 0.326 0.093 0.181 0.086 0.144 0.075 0.139 0.066
b1 0.270 0.044 0.144 0.035 0.111 0.027 0.094 0.025 0.082 0.024
b2 1.695 0.121 0.754 0.088 0.536 0.080 0.464 0.073 0.422 0.070
b3 0.984 0.155 0.471 0.117 0.330 0.097 0.296 0.084 0.255 0.074
a0 0.054 0.040 0.035 0.032 0.031
a1 0.227 0.185 0.160 0.151 0.140

a0 = 0.0, a1 = 0.2
n 383 467 462 488 454
b0 1.160 0.219 0.307 0.196 0.294 0.192 0.182 0.187 0.158 0.184
b1 0.382 0.058 0.170 0.049 0.134 0.046 0.105 0.044 0.094 0.045
b2 2.082 0.208 0.812 0.203 0.677 0.190 0.520 0.186 0.477 0.188
b3 1.306 0.190 0.532 0.161 0.422 0.142 0.326 0.140 0.297 0.133
a0 0.046 0.035 0.031 0.028 0.026
a1 0.197 0.167 0.154 0.137 0.130

a0 = 0.02, a1 = 0.0
n 410 418 441 442 490
b0 0.706 0.136 0.265 0.113 0.182 0.108 0.155 0.106 0.129 0.101
b1 0.288 0.045 0.141 0.033 0.106 0.028 0.087 0.023 0.077 0.021
b2 1.558 0.125 0.711 0.101 0.546 0.097 0.430 0.095 0.386 0.090
b3 0.979 0.146 0.428 0.117 0.348 0.088 0.267 0.081 0.234 0.071
a0 0.054 0.043 0.036 0.032 0.028
a1 0.228 0.187 0.162 0.143 0.136

a0 = a1 = 0.02
n 431 473 459 462 497
b0 0.981 0.129 0.432 0.110 0.195 0.098 0.158 0.089 0.144 0.088
b1 0.260 0.047 0.140 0.032 0.097 0.028 0.088 0.026 0.079 0.024
b2 1.763 0.138 0.791 0.126 0.504 0.114 0.449 0.111 0.393 0.112
b3 0.976 0.156 0.426 0.118 0.312 0.094 0.266 0.090 0.240 0.079
a0 0.054 0.042 0.036 0.031 0.029
a1 0.220 0.177 0.153 0.146 0.133

a0 = 0.02, a1 = 0.05
n 445 499 485 552 527
b0 0.846 0.123 0.371 0.094 0.189 0.082 0.172 0.074 0.147 0.069
b1 0.225 0.049 0.136 0.036 0.114 0.032 0.094 0.029 0.081 0.029
b2 1.468 0.163 0.755 0.149 0.562 0.144 0.483 0.138 0.415 0.136
b3 0.906 0.168 0.441 0.118 0.372 0.106 0.292 0.097 0.248 0.090
a0 0.054 0.039 0.036 0.032 0.029
a1 0.210 0.174 0.160 0.142 0.131

a0 = 0.02, a1 = 0.2
n 446 523 542 559 577
b0 1.293 0.144 0.566 0.108 0.342 0.096 0.209 0.095 0.172 0.092
b1 0.344 0.064 0.174 0.058 0.126 0.053 0.109 0.052 0.087 0.052
b2 2.335 0.296 1.023 0.286 0.688 0.284 0.550 0.280 0.443 0.281
b3 1.575 0.211 0.598 0.170 0.406 0.162 0.344 0.160 0.283 0.159
a0 0.048 0.037 0.032 0.029 0.026
a1 0.192 0.165 0.142 0.135 0.122
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Table 8: RMSE for estimates under the assumption a0 6= a1

1000 2000 3000 4000 5000
Hausman probit Hausman probit Hausman probit Hausman probit Hausman probit

a0 = 0.05, a1 = 0.0
n 427 491 480 485 510
b0 1.128 0.224 0.476 0.218 0.302 0.215 0.186 0.211 0.163 0.209
b1 0.306 0.047 0.146 0.038 0.108 0.033 0.088 0.032 0.084 0.029
b2 2.050 0.197 0.827 0.193 0.607 0.186 0.464 0.185 0.431 0.182
b3 1.245 0.170 0.432 0.120 0.364 0.106 0.298 0.092 0.255 0.089
a0 0.057 0.045 0.038 0.034 0.032
a1 0.222 0.180 0.159 0.144 0.136

a0 = 0.05, a1 = 0.02
n 457 501 532 521 543
b0 1.129 0.208 0.554 0.201 0.295 0.194 0.182 0.195 0.174 0.193
b1 0.241 0.051 0.157 0.039 0.114 0.036 0.095 0.033 0.087 0.031
b2 1.820 0.228 0.968 0.209 0.623 0.204 0.473 0.206 0.446 0.203
b3 0.925 0.170 0.504 0.128 0.351 0.116 0.297 0.106 0.258 0.100
a0 0.056 0.045 0.039 0.034 0.032
a1 0.210 0.176 0.160 0.140 0.133

a0 = a1 = 0.05
n 473 518 518 541 577
b0 1.328 0.196 0.501 0.187 0.214 0.171 0.186 0.173 0.178 0.167
b1 0.366 0.052 0.154 0.046 0.110 0.040 0.095 0.036 0.080 0.037
b2 2.263 0.248 0.880 0.249 0.559 0.236 0.484 0.237 0.413 0.236
b3 1.224 0.174 0.481 0.137 0.358 0.125 0.283 0.120 0.243 0.119
a0 0.052 0.044 0.036 0.034 0.030
a1 0.210 0.171 0.151 0.136 0.126

a0 = 0.05, a1 = 0.2
n 492 556 613 634 674
b0 1.611 0.131 0.484 0.097 0.338 0.088 0.289 0.078 0.209 0.077
b1 0.479 0.072 0.189 0.068 0.134 0.065 0.110 0.063 0.095 0.063
b2 2.844 0.400 0.987 0.393 0.752 0.395 0.611 0.391 0.485 0.397
b3 1.594 0.220 0.610 0.205 0.522 0.191 0.350 0.192 0.298 0.190
a0 0.047 0.039 0.034 0.030 0.029
a1 0.188 0.155 0.140 0.132 0.123

a0 = 0.2, a1 = 0.0
n 476 502 514 533 523
b0 1.577 0.648 0.887 0.640 0.603 0.632 0.325 0.634 0.402 0.636
b1 0.363 0.071 0.175 0.065 0.133 0.063 0.112 0.062 0.102 0.062
b2 2.420 0.504 1.265 0.502 0.927 0.495 0.624 0.498 0.650 0.498
b3 1.178 0.215 0.551 0.201 0.399 0.196 0.347 0.190 0.323 0.184
a0 0.064 0.053 0.047 0.041 0.039
a1 0.192 0.163 0.142 0.131 0.126

a0 = 0.2, a1 = 0.02
n 458 505 542 523 526
b0 1.646 0.626 0.980 0.625 0.638 0.621 0.492 0.621 0.305 0.619
b1 0.524 0.072 0.188 0.070 0.133 0.070 0.115 0.068 0.099 0.065
b2 4.448 0.527 1.430 0.524 0.929 0.526 0.765 0.523 0.564 0.518
b3 3.605 0.238 0.625 0.213 0.416 0.210 0.373 0.203 0.303 0.199
a0 0.063 0.052 0.046 0.042 0.039
a1 0.186 0.157 0.141 0.130 0.115

a0 = 0.2, a1 = 0.05
n 479 526 567 591 557
b0 1.968 0.610 1.183 0.606 0.676 0.607 0.426 0.598 0.310 0.603
b1 0.611 0.081 0.190 0.076 0.152 0.074 0.121 0.073 0.102 0.072
b2 4.030 0.565 1.646 0.563 1.050 0.563 0.739 0.562 0.578 0.562
b3 2.793 0.243 0.639 0.234 0.474 0.219 0.376 0.229 0.327 0.216
a0 0.062 0.053 0.048 0.041 0.037
a1 0.177 0.148 0.139 0.125 0.115

a0 = a1 = 0.2
n 451 571 607 628 704
b0 9.257 0.521 1.251 0.520 0.805 0.511 0.714 0.514 0.622 0.511
b1 9.970 0.103 0.278 0.100 0.201 0.103 0.242 0.101 0.139 0.101
b2 54.519 0.743 1.832 0.747 1.288 0.743 1.435 0.743 0.927 0.743
b3 31.885 0.320 0.941 0.302 0.661 0.311 0.846 0.303 0.418 0.306
a0 0.058 0.055 0.045 0.047 0.041
a1 0.157 0.136 0.131 0.124 0.117
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Table 9: RMSE for estimates with a0 or a1 as a function of x1

1000 2000 3000 4000 5000
Hausman probit Hausman probit Hausman probit Hausman probit Hausman probit

aa0 ∗ (0.5 + x1[j])0.02000, a1 = 0.0
n 162 165 145 143 170
b0 1.154 0.106 0.649 0.101 0.302 0.076 0.244 0.071 0.199 0.075
b1 0.060 0.049 0.045 0.039 0.034 0.031 0.029 0.031 0.027 0.030
b2 1.141 0.107 0.626 0.085 0.283 0.067 0.227 0.065 0.188 0.062
b3 0.194 0.138 0.153 0.121 0.107 0.086 0.095 0.078 0.091 0.071
aa0 0.059 0.050 0.038 0.036 0.031
aa1 0.031 0.020 0.016 0.014 0.012

aa0 ∗ (0.5 + x1[j])0.050000, a1 = 0.0
n 191 184 206 213 229
b0 1.209 0.162 0.512 0.135 0.352 0.143 0.234 0.131 0.195 0.127
b1 0.065 0.064 0.045 0.061 0.041 0.055 0.039 0.057 0.034 0.052
b2 1.188 0.145 0.493 0.123 0.331 0.124 0.221 0.114 0.181 0.111
b3 0.183 0.155 0.128 0.112 0.110 0.091 0.098 0.084 0.087 0.080
aa0 0.040 0.047 0.042 0.037 0.033
aa1 0.027 0.021 0.020 0.020 0.019

aa0 ∗ (0.5 + x1[j])0.200000, a1 = 0.0
n 178 310 362 345 343
b0 1.404 0.420 0.753 0.412 0.555 0.414 0.436 0.414 0.392 0.415
b1 0.113 0.198 0.104 0.201 0.104 0.199 0.102 0.199 0.094 0.201
b2 1.348 0.329 0.716 0.324 0.513 0.325 0.399 0.325 0.356 0.322
b3 0.212 0.188 0.149 0.157 0.117 0.140 0.102 0.140 0.093 0.131
aa0 0.076 0.065 0.061 0.058 0.060
aa1 0.076 0.072 0.078 0.078 0.074

a0 = 0, aa1 ∗ (0.5 + x1[j])0.020000
n 46 61 47 54 71
b0 0.277 0.114 0.162 0.081 0.157 0.074 0.121 0.065 0.123 0.062
b1 0.140 0.042 0.086 0.036 0.059 0.036 0.049 0.031 0.038 0.030
b2 0.430 0.090 0.270 0.080 0.185 0.065 0.153 0.052 0.123 0.058
b3 0.417 0.170 0.207 0.108 0.149 0.070 0.137 0.077 0.128 0.072
aa0 0.174 0.139 0.115 0.092 0.088
aa1 0.029 0.029 0.023 0.017 0.017

a0 = 0, aa1 ∗ (0.5 + x1[j])0.050000
n 64 66 78 79 76
b0 0.241 0.121 0.194 0.075 0.181 0.077 0.141 0.065 0.131 0.063
b1 0.107 0.088 0.072 0.066 0.063 0.060 0.043 0.058 0.046 0.059
b2 0.413 0.128 0.258 0.075 0.238 0.080 0.173 0.068 0.182 0.064
b3 0.377 0.163 0.234 0.105 0.195 0.096 0.161 0.091 0.148 0.063
aa0 0.159 0.140 0.142 0.105 0.106
aa1 0.043 0.030 0.029 0.028 0.025

a0 = 0, aa1 ∗ (0.5 + x1[j])0.200000
n 13 34 16 92 55
b0 0.283 0.214 0.107 0.157 0.112 0.131 0.106 0.148 0.078 0.141
b1 0.218 0.223 0.131 0.226 0.118 0.211 0.124 0.226 0.101 0.226
b2 0.396 0.215 0.116 0.166 0.094 0.176 0.111 0.153 0.085 0.156
b3 0.229 0.178 0.128 0.131 0.098 0.110 0.113 0.112 0.085 0.108
aa0 0.196 0.070 0.071 0.072 0.060
aa1 0.163 0.049 0.045 0.051 0.036
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