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Foreword 
 
The Center for Global Development builds its policy recommendations on both 
theoretical and empirical analysis. The empirical analysis often draws on historical, non-
experimental data, drawing inferences that rely partly on good judgment and partly on 
the considered application of the most sophisticated and appropriate econometric 
techniques available. This paper provides an introduction to econometric techniques that 
are specifically designed to extract causal lessons from data on a large number of 
individuals (whether countries, firms, or people) each of which is observed only a few 
times, such as annually over five or ten years. These techniques were developed in the 
1990s by authors such as Manuel Arellano, Richard Blundell, and Olympia Bover, and 
have been widely applied to estimate every thing from the impact of foreign aid to the 
importance of financial sector development to the effects of AIDS deaths on households.  
  
The present paper contributes to this literature pedagogically, by providing an original 
synthesis and exposition of the literature on these “dynamic panel estimators,” and 
practically, by presenting the first implementation of some of these techniques in Stata, a 
statistical software package widely used in the research community. Stata is designed to 
encourage users to develop new commands for it, which other users can then use or 
even modify. David Roodman’s xtabond2, introduced here, is now one of the most 
frequently downloaded user-written Stata commands in the world. Stata’s partially open-
source architecture has encouraged the growth of a vibrant world-wide community of 
researchers, which benefits not only from improvements made to Stata by the parent 
corporation, but also from the voluntary contributions of other users. Stata is arguably 
one of the best examples of a combination of private for-profit incentives and voluntary 
open-source incentives in the joint creation of a global public good. The Center for 
Global Development is pleased to contribute this paper and two commands, called 
xtabond2 and abar, to the research community. 
 
 
Nancy Birdsall 
President 
Center for Global Development 
 



Abstract

The “difference” and “system” generalized method of moments (GMM) estimators, developed by Holtz-
Eakin, Newey, and Rosen (1988), Arellano and Bond (1991), Arellano and Bover (1995), and Blundell and
Bond (1998), are increasingly popular. Both are general estimators designed for situations with “small
T , large N” panels, meaning few time periods and many individuals; with independent variables that are
not strictly exogenous, meaning correlated with past and possibly current realizations of the error; with
fixed effects; and with heteroskedasticity and autocorrelation within individuals. This pedagogic paper
first introduces linear GMM. Then it shows how limited time span and the potential for fixed effects and
endogenous regressors drive the design of the estimators of interest, offering Stata-based examples along
the way. Next it shows how to apply these estimators with xtabond2. It also explains how to perform the
Arellano-Bond test for autocorrelation in a panel after other Stata commands, using abar. The paper closes
with some tips for proper use.



1 Introduction

The Arellano-Bond (1991) and Arellano-Bover (1995)/Blundell-Bond (1998) dynamic panel estimators are

increasingly popular. Both are general estimators designed for situations with 1) “small T , large N” panels,

meaning few time periods and many individuals; 2) a linear functional relationship; 3) a single left-hand-side

variable that is dynamic, depending on its own past realizations; 4) independent variables that are not strictly

exogneous, meaning correlated with past and possibly current realizations of the error; 5) fixed individual

effects; and 6) heteroskedasticity and autocorrelation within individuals, but not across them. Arellano-

Bond estimation starts by transforming all regressors, usually by differencing, and uses the Generalized

Method of Moments (Hansen 1982), and so is called “difference GMM.”footnoteAs we will discuss, the

forward orthogonal deviations transform, proposed by Arellano and Bover (1995), is sometimes performed

instead of differencing. The Arellano-Bover/Blundell-Bond estimator augments Arellano-Bond by making an

additional assumption, that first differences of instrumenting variables are uncorrelated with the fixed effects.

This allows the introduction of more instruments, and can dramatically improve efficiency. It builds a system

of two equations—the original equation as well as the transformed one—and is known as “system GMM.”

The program xtabond2 implements these estimators. It has some important advantages over Stata’s built-in

xtabond. It implements system GMM. It can make the Windmeijer (2005) finite-sample correction to the

reported standard errors in two-step estimation, without which those standard errors tend to be severely

downward biased. It offers forward orthogonal deviations, an alternative to differencing that preserves sample

size in panels with gaps. And it allows finer control over the instrument matrix.

Interestingly, though the Arellano and Bond paper is now seen as the source of an estimator, it is en-

titled, “Some Tests of Specification for Panel Data.” The instrument sets and use of GMM that largely

define difference GMM originated with Holtz-Eakin, Newey, and Rosen (1988). One of Arellano and Bond’s

contributions is a test for autocorrelation appropriate for linear GMM regressions on panels, which is espe-

cially important when lags are used as instruments. xtabond2, like xtabond, automatically reports this test.

But since ordinary least squares (OLS) and two-stage least squares (2SLS) are special cases of linear GMM,

the Arellano-Bond test has wider applicability. The post-estimation command abar, also introduced in this

paper, makes the test available after regress, ivreg, ivreg2, newey, and newey2.

One disadvantage of difference and system GMM is that they are complicated and can easily generate

invalid estimates. Implementing them with a Stata command stuffs them into a black box, creating the

risk that users, not understanding the estimators’ purpose, design, and limitations, will unwittingly misuse
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them. This paper aims to prevent that. Its approach is therefore pedagogic. Section 2 introduces linear

GMM. Section 3 describes the problem these estimators are meant to solve, and shows how that drives their

design. A few of the more complicated derivations in those sections are intentionally incomplete since their

purpose is to build intuitions; the reader must refer to the original papers for details. Section 4 explains the

xtabond2 and abar syntaxes, with examples. Section 5 concludes with a few tips for good practice.

2 Linear GMM1

2.1 The GMM estimator

The classic linear estimators, Ordinary Least Squares (OLS) and Two-Stage Least Squares (2SLS), can be

thought of in several ways, the most intuitive being suggested by the estimators’ names. OLS minimizes

the sum of the squared errors. 2SLS can be implemented via OLS regressions in two stages. But there is

another, more unified way to view these estimators. In OLS, identification can be said to flow from the

assumption that the regressors are orthogonal to the errors; in other words, the inner products, or moments

of the regressors with the errors are set to 0. In the more general 2SLS framework, which distinguishes

between regressors and instruments while allowing the two categories to overlap (variables in both categories

are included, exogenous regressors), the estimation problem is to choose coefficients on the regressors so that

the moments of the errors with the instruments are again 0.

However, an ambiguity arises in conceiving of 2SLS as a matter of satisfying such moment conditions.

What if there are more instruments than regressors? If equations (moment conditions) outnumber variables

(parameters), the conditions cannot be expected to hold perfectly in finite samples even if they are true

asymptotically. This is the sort of problem we are interested in. To be precise, we want to fit the model:

y = x′β + ε

E[zε] = 0

E[ε|z] = 0

where β is a column of coefficients, y and ε are random variables, x = [x1 . . .xk]′ is a column of k regressors,

z = [z1 . . . zj ]
′ is column of j instruments, x and z may share elements, and j ≥ k. We use X, Y, and

1For another introduction to GMM, see Baum, Schaffer, and Stillman (2003). For a full account, see Ruud (2000, chs.
21–22). Both sources greatly influence this account.
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Z to represent matrices of N observations for x, y, and z, and define E = Y − Xβ. Given an estimate

β̂, the empirical residuals are Ê = [ê1 . . . êN ]′ = Y − Xβ̂. We make no assumption at this point about

E [EE′|Z] ≡ Ω except that it exists.

The challenge in estimating this model is that while all the instruments are theoretically orthogonal to

the error term (E[zε] = 0), trying to force the corresponding vector of empirical moments, EN [zε] = 1
N Z′Ê,

to zero creates a system with more equations than variables if instruments outnumber parameters. The

specification is overidentified. Since we cannot expect to satisfy all the moment conditions at once, the

problem is to satisfy them all as well as possible, in some sense, that is, to minimize the magnitude of the

vector EN [zε].

In the Generalized Method of Moments, one defines that magnitude through a generalized metric, based

on a positive semi-definite quadratic form. Let A be the matrix for such a quadratic form. Then the metric

is:

‖EN [zε]‖A =
∥∥∥∥ 1

N
Z′Ê

∥∥∥∥
A

≡ N

(
1
N

Z′Ê
)′

A
(

1
N

Z′Ê
)

=
1
N

Ê′ZAZ′Ê. (1)

To derive the implied GMM estimate, call it β̂A, we solve the minimization problem β̂A = argminβ̂

∥∥∥Z′Ê∥∥∥
A

,

whose solution is determined by 0 = d
dβ̂

∥∥∥Z′Ê∥∥∥
A

. Expanding this derivative with the chain rule gives:

0 =
d

dβ̂

∥∥∥Z′Ê∥∥∥
A

=
d

dÊ

∥∥∥Z′Ê∥∥∥
A

dÊ

dβ̂
=

d

dÊ

(
1
N

Ê′ (ZAZ′
)
Ê
) d

(
Y −Xβ̂

)
dβ̂

=
2
N

Ê′ZAZ′ (−X) .

The last step uses the matrix identities dAb/db = A and d (b′Ab)/db = 2b′A, where b is a column vector

and A a symmetric matrix. Dropping the factor of −2/N and transposing,

0 = Ê′ZAZ′X =
(
Y −Xβ̂A

)′
ZAZ′X = Y′ZAZ′X− β̂′AX′ZAZ′X

⇒ X′ZAZ′Xβ̂′A = X′ZAZ′Y

⇒ β̂ =
(
X′ZAZ′X

)−1
X′ZAZ′Y (2)

This is the GMM estimator implied by A. It is linear in Y.

The estimator is consistent, meaning that it converges in probability to β as sample size goes to infinity

(Hansen 1982). But it is not in general unbiased, as subsection 2.6 discusses, because in finite samples the

instruments are not in general perfectly uncorrelated with the endogenous components of the instrumented
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regressors (correlation coefficients between finite samples of uncorrelated variables are usually not exactly

0).

For future reference, we note that the error of the estimator is the corresponding projection of the true

model errors:

β̂A − β =
(
X′ZAZ′X

)−1
X′ZAZ′ (Xβ + E)− β

=
(
X′ZAZ′X

)−1
X′ZAZ′Xβ +

(
X′ZAZ′X

)−1
X′ZAZ′E− β

=
(
X′ZAZ′X

)−1
X′ZAZ′E. (3)

2.2 Efficiency

It can be seen from (2) that multiplying A by a non-zero scalar would not change β̂A. But up to a factor of

proportionality, each choice of A implies a different linear, consistent estimator of β. Which A should the

researcher choose? Setting A = I, the identity matrix, is intuitive, generally inefficient, and instructive. By

(1) it would yield an equal-weighted Euclidian metric on the moment vector. To see the inefficiency, consider

what happens if there are two mean-zero instruments, one drawn from a variable with variance 1, the other

from a variable with variance 1,000. Moments based on the second would easily dominate under equal

weighting, wasting the information in the first. Or imagine a cross-country growth regression instrumenting

with two highly correlated proxies for the poverty level. The marginal information content in the second

would be minimal, yet including it in the moment vector would essentially double the weight of poverty

relative to other instruments. Notice that in both these examples, the inefficiency would theoretically be

signaled by high variance or covariance among moments. This suggests that making A scalar is inefficient

unless the moments 1
N z′iE have equal variance and are uncorrelated—that is, if Var [Z′E] is itself scalar.

This is in fact the case, as will be seen.2

But that negative conclusion hints at the general solution. For efficiency, A must in effect weight moments

in inverse proportion to their variances and covariances. In the first example above, such reweighting would

appropriately deemphasize the high-variance instrument. In the second, it would efficiently down-weight one

or both of the poverty proxies. In general, for efficiency, we weight by the inverse of the variance matrix of

the moments:

AEGMM = Var [Z′E]−1 = (Z′ Var [E|Z]Z)−1 = (Z′ΩZ)−1 . (4)

2This argument is identical to that for the design of Generalized Least Squares, except that GLS is derived with reference
to the errors E where GMM is derived with reference to the moments Z’E.
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The “EGMM” stands for “efficient GMM.” The EGMM estimator minimizes

∥∥∥Z′Ê∥∥∥
AEGMM

=
1
N

(
Z′Ê

)′
Var [Z′E]−1 Z′Ê

Substituting this choice of A into (2) gives the direct formula for efficient GMM:

β̂EGMM =
(
X′Z (Z′ΩZ)−1 Z′X

)−1

X′Z (Z′ΩZ)−1 Z′Y (5)

Efficient GMM is not feasible, however, unless Ω is known.

Before we move to making the estimator feasible, we demonstrate its theoretical efficiency. Let B be the

vector space of linear, scalar-valued functions of the random vector Y. This space contains all the coefficient

estimates flowing from linear estimators based on Y. For example, if c = (1 0 0 . . .) then cβ̂A ∈ B is the

estimated coefficient for x1 according to the GMM estimator implied by some A. We define an inner product

on B by 〈b1, b2〉 = Cov [b1, b2]; the corresponding metric is ‖b‖2 = Var [b]. The assertion that (5) is efficient is

equivalent to saying that for any row vector c, the variance of the corresponding combination of coefficients

from an estimate,
∥∥∥cβ̂A

∥∥∥, is smallest when A = AEGMM.

In order to demonstrate that, we first show that
〈
cβ̂A, cβ̂AEGMM

〉
is invariant in the choice of A. We

start with the definition of the covariance matrix and substitute in with (3) and (4):

〈
cβ̂A, cβ̂AEGMM

〉
= Cov

[
cβ̂A, cβ̂AGMM

]
= Cov

[
c
(
X′ZAZ′X

)−1
X′ZAZ′Y, c (X′ZAEGMMZ′X)−1 X′ZAEGMMZ′Y

]
= c

(
X′ZAZ′X

)−1
X′ZAZ′ E

[
EE′∣∣Z]Z (Z′ΩZ)−1 Z′X

(
X′Z (Z′ΩZ)−1 Z′X

)−1

c′

= c
(
X′ZAZ′X

)−1
X′ZAZ′ΩZ (Z′ΩZ)−1 Z′X

(
X′Z (Z′ΩZ)−1 Z′X

)−1

c′

= c
(
X′ZAZ′X

)−1
X′ZAZ′X

(
X′Z (Z′ΩZ)−1 Z′X

)−1

c′

= c
(
X′Z (Z′ΩZ)−1 Z′X

)−1

c′.

This does not depend on A. As a result, for any A,
〈
cβ̂AEGMM

, c
(
β̂AEGMM

− β̂A

)〉
=
〈
cβ̂AEGMM

, cβ̂AEGMM

〉
−〈

cβ̂AEGMM
, cβ̂A

〉
= 0. That is, the difference between any linear GMM estimator and the EGMM estimator

is orthogonal to the latter. By the Pythagorean Theorem,
∥∥∥cβ̂A

∥∥∥2

=
∥∥∥cβ̂A − cβ̂AEGMM

∥∥∥2

+
∥∥∥cβ̂AEGMM

∥∥∥2

≥∥∥∥cβ̂AEGMM

∥∥∥2

, which suffices to prove the assertion. This result is akin to the fact if there is a ball in midair,

the point on the ground closest to the ball (analogous to the efficient estimator) is the one such that the
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vector from the point to the ball is perpendicular to all vectors from the point to other spots on the ground

(which are all inferior estimators of the ball’s position).

Perhaps greater insight comes from a visualization based on another derivation of efficient GMM. Under

the assumptions in our model, a direct OLS estimate of Y = Xβ +E is biased. However, taking Z-moments

of both sides gives

Z′Y = Z′Xβ + Z′E, (6)

which is asymptotically amenable to OLS, since the regressors, Z′X, are now orthogonal to the errors:

E
[
(Z′X)′ Z′E

]
= (Z′X)′ E [Z′E|Z] = 0 (Holtz-Eakin, Newey, and Rosen 1988). Still, though, OLS is not

in general efficient on the transformed equation, since the errors are not i.i.d.—Var [Z′E] = Z′ΩZ, which

cannot be assumed scalar. To solve this problem, we transform the equation again:

(Z′ΩZ)−1/2 Z′Y = (Z′ΩZ)−1/2 Z′Xβ + (Z′ΩZ)−1/2 Z′E. (7)

Defining X∗ = (Z′ΩZ)−1/2 Z′X, Y∗ = (Z′ΩZ)−1/2 Z′Y, and E∗ = (Z′ΩZ)−1/2 Z′E, the equation becomes

Y∗ = X∗β + E∗. (8)

Since

Var [E∗|Z] = (Z′ΩZ)−1/2 Z′ Var [E|Z]Z (Z′ΩZ)−1/2 = (Z′ΩZ)−1/2 Z′ΩZ (Z′ΩZ)−1/2 = I.

this version has spherical errors. So the Gauss-Markov Theorem guarantees the efficiency of OLS on (8),

which is, by definition, Generalized Least Squares on (6): β̂GLS =
(
X∗′

X∗
)−1

X∗′
Y∗. Unwinding with the

definitions of X∗ and Y∗ yields efficient GMM, just as in (5).

Efficient GMM, then, is GLS on Z-moments. Where GLS projects Y into the column space of X, GMM

estimators, efficient or otherwise, project Z′Y into the column space of Z′X. These projections also map the

variance ellipsoid of Z′Y, namely Z′ΩZ, which is also the variance ellipsoid of the moments, into the column

space of Z′X. If Z′ΩZ happens to be spherical, then the efficient projection is orthogonal, by Gauss-Markov,

just as the shadow of a soccer ball is smallest when the sun is directly overhead. But if the variance ellipsoid

of the moments is an American football pointing at an odd angle, as in the examples at the beginning of this

subsection—if Z′ΩZ is not spherical—then the efficient projection, the one casting the smallest shadow, is
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angled. To make that optimal projection, the mathematics in this second derivation stretch and shear space

with a linear transformation to make the football spherical, perform an orthogonal projection, then reverse

the distortion.

2.3 Feasibility

Making efficient GMM practical requires a feasible estimator for the central expression, Z′ΩZ. The simplest

case is when the errors (not the moments of the errors) are believed to be homoskedastic, with Ω of the form

σ2I. Then, the EGMM estimator simplifies to two-stage least squares (2SLS):

β̂2SLS =
(
X′Z (Z′Z)−1 Z′X

)−1

X′Z (Z′Z)−1 Z′Y.

In this case, EGMM is 2SLS.3 (The Stata commands ivreg and ivreg2 (Baum, Schaffer, and Stillman

2003) implement 2SLS.) When more complex patterns of variance in the errors are suspected, the researcher

can use a kernel-based estimator for the standard errors, such as the “sandwich” one ordinarily requested

from Stata estimation commands with the robust and cluster options. A matrix Ω̂ is constructed based

on a formula that itself is not asymptotically convergent to Ω, but which has the property that 1
N Z′Ω̂Z is a

consistent estimator of 1
N Z′ΩZ under given assumptions. The result is the feasible efficient GMM estimator:

β̂FEGMM =
(
X′Z

(
Z′Ω̂Z

)−1

Z′X
)−1

X′Z
(
Z′Ω̂Z

)−1

Z′Y.

For example, if we believe that the only deviation from sphericity is heteroskedasticity, then given consistent

initial estimates, Ê, of the residuals, we define

Ω̂ =



ê2
1

ê2
2

. . .

ê2
N


.

3However, even when the two are identical in theory, in finite samples, the feasible efficient GMM algorithm we shortly develop
produces different results from 2SLS. And these are potentially inferior since two-step standard errors are often downward biased.
See subsection 2.4 of this paper and Baum, Schaffer, and Stillman (2003).
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Similarly, in a panel context, we can handle arbitrary patterns of covariance within individuals with a

“clustered” Ω̂, a block-diagonal matrix with blocks

Ω̂i = ÊiÊ′
i =



ê2
i1 êi1êi2 · · · êi1êiT

êi2êi1 ê2
2 · · · êi2êiT

...
...

. . .
...

êiT êi1 · · · · · · ê2
iT


. (9)

Here, Êi is the vector of residuals for individual i, the elements ê are double-indexed for a panel, and T is

the number of observations per individual.

A problem remains: where do the ê come from? They must be derived from an initial estimate of

β. Fortunately, as long as the initial estimate is consistent, a GMM estimator fashioned from them is

asymptotically efficient. Theoretically, any full-rank choice of A for the initial estimate will suffice. Usual

practice is to choose A = (Z′HZ)−1, where H is an “estimate” of Ω based on a minimally arbitrary

assumption about the errors, such as homoskedasticity.

Finally, we arrive at a practical recipe for linear GMM: perform an initial GMM regression, replacing Ω

in (5) with some reasonable but arbitrary H, yielding β̂1 (one-step GMM); obtain the residuals from this

estimation; use these to construct a sandwich proxy for Ω, call it Ω̂β̂1
; rerun the GMM estimation, setting

A =
(
Z′Ω̂β̂1

Z
)−1

. This two-step estimator, β̂2, is asymptotically efficient and robust to whatever patterns

of heteroskedasticity and cross-correlation the sandwich covariance estimator models. In sum:

β̂1 =
(
X′Z (Z′HZ)−1 Z′X

)−1

X′Z (Z′HZ)−1 Z′Y (10)

β̂2 = β̂EFGMM =
(
X′Z

(
Z′Ω̂β̂1

Z
)−1

Z′X
)−1

X′Z
(
Z′Ω̂β̂1

Z
)−1

Z′Y

Historically, researchers often reported one-step results as well because of downward bias in the computed

standard errors in two-step. But as the next subsection explains, Windmeijer (2005) has greatly reduced

this problem.
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2.4 Estimating standard errors

The true variance of a linear GMM estimator is

Var
[
β̂A

∣∣∣Z] = Var
[(

X′ZAZ′X
)−1

X′ZAZ′Y
]

= Var
[
β +

(
X′ZAZ′X

)−1
X′ZAZ′E

∣∣∣Z]
= Var

[(
X′ZAZ′X

)−1
X′ZAZ′E

∣∣∣Z]
=

(
X′ZAZ′X

)−1
X′ZAZ′ Var [E|Z]ZAZ′X

(
X′ZAZ′X

)−1

=
(
X′ZAZ′X

)−1
X′ZAZ′ΩZAZ′X

(
X′ZAZ′X

)−1 . (11)

But for both one- and two-step estimation, there are complications in developing feasible approximations for

this formula.

In one-step estimation, although the choice of A = (Z′HZ)−1 as a weighting matrix for the instruments,

discussed above, does not render the parameter estimates inconsistent even when based on incorrect as-

sumptions about the variance of the errors, analogously substituting H for Ω in (11) can make the estimate

of their variance inconsistent. The standard error estimates will not be “robust” to heteroskedasticity or

serial correlation in the errors. Fortunately, they can be made so in the usual way, replacing Ω in (11) with

a sandwich-type proxy based on the one-step residuals. This yields the feasible, robust estimator for the

one-step standard errors:

V̂arr
[
β̂1

]
=
(
X′Z (Z′HZ)−1 Z′X

)−1

X′Z (Z′HZ)−1 Z′Ω̂β̂1
Z (Z′HZ)−1 Z′X

(
X′Z (Z′HZ)−1 Z′X

)−1

.

The complication with the two-step variance estimate is less straightforward. The thrust of the exposition

to this point has been that, because of its sophisticated reweighting based on second moments, GMM

is in general more efficient than 2SLS. But such assertions are asymptotic. Whether GMM is superior

in finite samples—or whether the sophistication even backfires—is in a sense an empirical question. The

case in point: for (infeasible) efficient GMM, in which A = (Z′ΩZ)−1, (11) simplifies to Var
[
β̂AEGMM

]
=(

X′Z (Z′ΩZ)−1 Z′X
)−1

, a feasible, consistent estimate of which is V̂ar
[
β̂2

]
≡
(
X′Z

(
Z′Ω̂β̂1

Z
)−1

Z′X
)−1

.

This is the standard formula for the variance of linear GMM estimates. But it can produce standard errors

that are downward biased when the number of instruments is large—severely enough to make two-step GMM

useless for inference (Arellano and Bond 1991).
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The trouble is that in small samples reweighting empirical moments based on their own estimated vari-

ances and covariances can end up mining data, indirectly overweighting observations that fit the model

and underweighting ones that contradict it. Since the number of moment covariances to be estimated for

FEGMM, namely the distinct elements of the symmetric Var [Z′E], is j(j + 1), these covariances can easily

outstrip the statistical power of a finite sample. In fact, it is not hard for j(j + 1) to exceed N . When sta-

tistical power is that low, it becomes hard to distinguish means from variances. For example, if the poorly

estimated variance of some moment, Var [ziε] is large, this could be because it truly has higher variance and

deserves deemphasis; or it could be because the moment happens to put more weight on observations that

do not fit the model well, in which case deemphasizing them overfits the model. The problem is analogous

to that of estimating the population variances of a hundred distinct variables each with an absurdly small

sample. If the samples have 1 observation each, it is impossible to estimate the variances. If they have 2

each, the sample standard deviation will tend to be half the population standard deviation, which is why

small-sample corrections factors of the form N/(N − k) are necessary in estimating population values.

This phenomenon does not bias coefficient estimates since identification still flows from instruments

believed to be exogenous. But it can produce spurious precision in the form of implausibly good standard

errors.

Windmeijer (2005) devises a small-sample correction for the two-step standard errors. The starting

observation is that despite appearances in (10), β̂2 is not simply linear in the random vector Y. It is also a

function of Ω̂β̂1
, which depends on β̂1, which depends on Y too. To express the full dependence of β̂2 on Y,

let

g
(
Y, Ω̂

)
=
(
X′Z

(
Z′Ω̂Z

)−1

Z′X
)−1

X′Z
(
Z′Ω̂Z

)−1

Z′E. (12)

By (3), this is the error of the GMM estimator associated with A =
(
Z′Ω̂Z

)−1

. g is infeasible since the

true disturbances, E, are unobserved. In the second step of FEGMM, where Ω̂ = Ω̂β̂1
, g
(
Y, Ω̂β̂1

)
= β̂2−β,

so g has the same variance as β̂2, which is what we are interested in, but zero expectation. Both of g’s

arguments are random. Yet the usual derivation of the variance estimate for β̂2 treats Ω̂β̂1
as infinitely

precise. That is appropriate for one-step GMM, where Ω̂ = H is constant. But it is wrong in two-step,

in which Z′Ω̂β̂1
Z, the estimate of the second moments of the Z-moments and the basis for reweighting, is

imprecise. To compensate, Windmeijer develops a fuller formula for the dependence of g on the data via both

its arguments, then calculates its variance. The expanded formula is infeasible, but a feasible approximation

performs well in Windmeijer’s simulations.
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Windmeijer starts with a first-order Taylor expansion of g, viewed as a function of β̂1, around the true

(and unobserved) β:

g
(
Y, Ω̂β̂1

)
≈ g

(
Y, Ω̂β

)
+

∂

∂β̂
g
(
Y, Ω̂β̂

)∣∣∣∣
β̂=β

(
β̂1 − β

)
.

Defining D = ∂g
(
Y, Ω̂β̂

)
/∂β̂

∣∣∣
β̂=β

and noting that β̂1 − β = g (Y,H), this is

g
(
Y, Ω̂β̂1

)
≈ g

(
Y, Ω̂β

)
+ Dg (Y,H) . (13)

Windmeijer expands the derivative in the definition of D using matrix calculus on (12), then replaces

infeasible terms within it, such as Ω̂β , β, and E, with feasible approximations. It works out that the result,

D̂, is the k × k matrix whose pth column is

−
(
X′Z

(
Z′Ω̂β̂1

Z
)−1

Z′X
)−1

X′Z
(
Z′Ω̂β̂1

Z
)−1

Z′
∂Ω̂β̂

∂β̂p

∣∣∣∣∣
β̂=β̂1

Z
(
Z′Ω̂β̂1

Z
)−1

Z′Ê2,

where β̂p is the pth element of β̂. The formula for the ∂Ω̂β̂/∂β̂p within this expression depends on that for

Ω̂β̂ . In the case of clustered errors on a panel, Ω̂β̂ has blocks Ê1,iÊ′
1,i, so by the product rule ∂Ω̂β̂/∂β̂p

has blocks ∂Ê1,i/∂β̂pÊ′
1,i + Êi∂Ê′

1,i/∂β̂p = −xp,iÊ′
1,i − Ê1,ix′p,i, where Ê1,i contains the one-step errors for

individual i and xp,i holds the observations of regressor xp for individual i. The feasible variance estimate

of (13), i.e., the corrected estimate of the variance of β̂2, works out to

V̂arc
[
β̂2

]
= V̂ar

[
β̂2

]
+ D̂V̂ar

[
β̂2

]
+ V̂ar

[
β̂2

]
D̂′ + D̂V̂arr

[
β̂1

]
D̂′

The first term is the uncorrected variance estimate, and the last contains the robust one-step estimate.

In difference GMM regressions on simulated panels, Windmeijer finds that the two-step efficient GMM

performs somewhat better than one-step in estimating coefficients, with lower bias and standard errors. And

the reported two-step standard errors, with his correction, are quite accurate, so that two-step estimation

with corrected errors seems modestly superior to robust one-step.4

2.5 The Sargan/Hansen test of overidentifying restrictions

A crucial assumption for the validity of GMM estimates is of course that the instruments are exogenous.

If the estimation is exactly identified, detection of invalid instruments is impossible because even when
4xtabond2 offers both.
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E[zε] 6= 0, the estimator will choose β̂ so that Z′Ê = 0 exactly. But if the system is overidentified, a test

statistic for the joint validity of the moment conditions (identifying restrictions) falls naturally out of the

GMM framework. Under the null of joint validity, the vector of empirical moments 1
N Z′Ê is randomly

distributed around 0. A Wald test can check this hypothesis. If it holds, then

(
1
N

Z′Ê
)′

Var
[

1
N

Z′Ê
]−1 1

N
Z′Ê =

1
N

(
Z′Ê

)′
AEGMMZ′Ê (14)

is χ2 with degrees of freedom equal to the degree of overidentification, j − k. The Hansen (1982) J test

statistic for overidentifying restrictions is this expression made feasible by substituting a consistent estimate

of AEGMM. In other words, it is just the minimized value of the criterion expression in (1) for an efficient

GMM estimator. If Ω is scalar, then AEGMM = (Z′Z)−1. In this case, the Hansen test coincides with the

Sargan (1958) test and is consistent for “non-robust” GMM. But if non-sphericity is suspected in the errors,

as in robust one-step GMM, the Sargan test statistic— 1
N

(
Z′Ê

)′
(Z′Z)−1 Z′Ê—is inconsistent. In that case,

a theoretically superior overidentification test for the one-step estimator is that based on the Hansen statistic

from a two-step estimate. When the user requests the Sargan test for “robust” one-step GMM regressions,

some software packages, including ivreg2 and xtabond2, therefore quietly perform the second GMM step

in order to obtain and report a consistent Hansen statistic.

Sargan/Hansen statistics can also be used to test the validity of subsets of instruments, via a “difference in

Sargan” test, also known as a C statistic. If one performs an estimation with and without a subset of suspect

instruments, under the null of joint validity of the full instrument set, the difference in the two reported

Sargan/Hansen test statistics is itself asymptotically χ2, with degrees of freedom equal to the number of

suspect instruments. The regression without the suspect instruments is called the “unrestricted” regression

since it imposes fewer moment conditions. The difference-in-Sargan test is of course only feasible if this

unrestricted regression is exactly or over-identified. (See Baum, Schaffer, and Stillman (2003).)

The Sargan/Hansen test should not be relied upon too faithfully, as it is prone to weakness. Intuitively

speaking, when we apply it after GMM, we are first trying to get 1
N Z′Ê close to 0, then testing whether

it is close to 0. Counterintuitively, however, the test actually grows weaker the more instruments there are

whose moments are being minimized, as the next subsection discusses.
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2.6 The problem of too many instruments

The difference and system GMM estimators described in the next section can generate moment conditions

prolifically, with the instrument count quadratic in time dimension, T . This can cause several problems

in finite samples. First, since the number of elements in the estimated variance matrix of the moments is

quadratic in the instrument count, it is quartic in T . A finite sample may lack adequate information to

estimate such a large matrix well. It is not uncommon for the matrix to become singular, forcing the use of

a generalized inverse. This does not compromise the coefficient estimates (again, any choice of A will give

a consistent estimator), but does dramatize the distance of FEGMM from the asymptotic ideal. And it can

weaken the Sargan/Hansen test to the point where it generates implausibly good p values of 1.000 (Bowsher

2002). Indeed, Sargan himself (1958) determined without the aid of modern computers that the error in the

his test is ”proportional to the number of instrumental variables, so that, if the asymptotic approximations

are to be used, this number must be small.”

In addition, a large instrument collection can overfit endogenous variables. For intuition, consider that in

2SLS, if the number of instruments equals the number of observations, the R2’s of the first-stage regressions

are 1 and the second-stage results match those of (biased) OLS.

Unfortunately, there appears to be little guidance from the literature on how many instruments is “too

many” (Ruud 2000, p. 515), in part because the bias is present to some extent even when instruments are

few. In one simulation of difference GMM on an 8 × 100 panel, Windmeijer (2005) reports that cutting

the instrument count from 28 to 13 reduced the average bias in the two-step estimate of the parameter of

interest by 40%. On the other hand, the average parameter estimate only rose from 0.9810 to 0.9866, against

a true value of 1.000. xtabond2 issues a warning when instruments outnumber individuals in the panel, as a

minimally arbitrary rule of thumb. Windmeijer’s finding arguably indicates that that limit is generous. At

any rate, in using GMM estimators that can generate many instruments, it is good practice to report the

instrument count and test the robustness of results to reducing it. The next sections describe the instrument

sets typical of difference and system GMM, and ways to contain them with xtabond2.

3 The difference and system GMM estimators

The difference and system GMM estimators can be seen as part of broader historical trend in econometric

practice toward estimators that make fewer assumptions about the underlying data-generating process and

use more complex techniques to isolate useful information. The plummeting costs of computation and
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software distribution no doubt have abetted the trend.

The difference and system GMM estimators are designed for panel analysis, and embody the following

assumptions about the data-generating process:

1. The process may be dynamic, with current realizations of the dependent variable influenced by past

ones.

2. There may be arbitrarily distributed fixed individual effects in the dynamic, so that the dependent

variable consistently changes faster for some observational units than others. This argues against cross-

section regressions, which must essentially assume fixed effects away, and in favor of a panel set-up,

where variation over time can be used to identify parameters.

3. Some regressors may be endogenous.

4. The idiosyncratic disturbances (those apart from the fixed effects) may have individual-specific patterns

of heteroskedasticity and serial correlation.

5. The idiosyncratic disturbances are uncorrelated across individuals.

In addition, some secondary worries shape the design:

6. Some regressors may be predetermined but not strictly exogenous: even if independent of current

disturbances, still influenced by past ones. The lagged dependent variable is an example.

7. The number of time periods of available data, T , may be small. (The panel is “small T , large N .”)

Finally, since the estimators are designed for general use, they do not assume that good instruments are

available outside the immediate data set. In effect, it is assumed that:

8. The only available instruments are “internal”—based on lags of the instrumented variables.

However, the estimators do allow inclusion of external instruments.

The general model of the data-generating process is much like that in section 2:

yit = αyi,t−1 + x′itβ + εit (15)

εit = µi + vit

E [µi] = E [vit] = E [µivit] = 0
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Here the disturbance term has two orthogonal components: the fixed effects, µi, and the idiosyncratic shocks,

vit. Note that we can rewrite (15) as

∆yit = (α− 1)yi,t−1 + x′itβ + εit

So the model can equally be thought of as being for the level or growth of y.

In this section, we start with the classic OLS estimator applied to (15), and then modify it step by step

to address all these concerns, ending with the estimators of interest.

For a continuing example, we will copy the application to firm-level employment in Arellano and Bond

(1991). Their panel data set is based on a sample of 140 U.K. firms surveyed annually in 1976–84. The

panel is unbalanced, with some firms having more observations than others. Since hiring and firing workers

is costly, we expect employment to adjust with delay to changes in factors such as capital stock, wages,

and demand for the firms’ output. The process of adjustment to changes in these factors may depend both

on the passage of time—which argues for including several lags of these factors as regressors—and on the

difference between equilibrium employment level and the previous year’s actual level—which argues for a

dynamic model, in which lags of the dependent variable are also regressors.

The Arellano-Bond data set is on the Stata web site. To download it in Stata, type webuse abdata.5

The data set indexes observations by the firm identifier, id, and year. The variable n is firm employment,

w is the firm’s wage level, k is the firm’s gross capital, and ys is aggregate output in the firm’s sector, as

a proxy for demand; all variables are in logarithms. Variables names ending in L1 or L2 indicate lagged

copies. In their model, Arellano and Bond include two copies each of employment and wages (current and

one-period lag) in their employment equation, three copies each of capital and sector-level output, and time

dummies.

A naive attempt to estimate the model in Stata would look like this:

. regress n nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr*

Source SS df MS Number of obs = 751
F( 16, 734) = 8136.58

Model 1343.31797 16 83.9573732 Prob > F = 0.0000
Residual 7.57378164 734 .010318504 R-squared = 0.9944

Adj R-squared = 0.9943
Total 1350.89175 750 1.801189 Root MSE = .10158

n Coef. Std. Err. t P>|t| [95% Conf. Interval]

nL1 1.044643 .0336647 31.03 0.000 .9785523 1.110734

5In Stata 7, type use http://www.stata-press.com/data/r7/abdata.dta.
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nL2 -.0765426 .0328437 -2.33 0.020 -.1410214 -.0120639
w -.5236727 .0487799 -10.74 0.000 -.6194374 -.427908

wL1 .4767538 .0486954 9.79 0.000 .381155 .5723527
k .3433951 .0255185 13.46 0.000 .2932972 .3934931

kL1 -.2018991 .0400683 -5.04 0.000 -.2805613 -.123237
kL2 -.1156467 .0284922 -4.06 0.000 -.1715826 -.0597107
ys .4328752 .1226806 3.53 0.000 .1920285 .673722

ysL1 -.7679125 .1658165 -4.63 0.000 -1.093444 -.4423813
ysL2 .3124721 .111457 2.80 0.005 .0936596 .5312846

yr1976 (dropped)
yr1977 (dropped)
yr1978 (dropped)
yr1979 .0158888 .0143976 1.10 0.270 -.0123765 .0441541
yr1980 .0219933 .0166632 1.32 0.187 -.01072 .0547065
yr1981 -.0221532 .0204143 -1.09 0.278 -.0622306 .0179243
yr1982 -.0150344 .0206845 -0.73 0.468 -.0556422 .0255735
yr1983 .0073931 .0204243 0.36 0.717 -.0327038 .0474901
yr1984 .0153956 .0230101 0.67 0.504 -.0297779 .060569
_cons .2747256 .3505305 0.78 0.433 -.4134363 .9628875

3.1 Purging fixed effects

One immediate problem in applying OLS to this empirical problem, and to (15) in general, is that yi,t−1

is endogenous to the fixed effects in the error term, which gives rise to “dynamic panel bias.” To see this,

consider the possibility that a firm experiences a large, negative employment shock for some reason not

modeled, say in 1980, so that the shock goes into the error term. All else equal, the apparent fixed effect

for that firm for the entire 1976–84 period—the deviation of its average unexplained employment from the

sample average—will appear lower. In 1981, lagged employment and the fixed effect will both be lower. This

positive correlation between a regressor and the error violates an assumption necessary for the consistency

OLS. In particular, it inflates the coefficient estimate for lagged employment by attributing predictive power

to it that actually belongs to the firm’s fixed effect. Note that here T = 9. If T were large, one 1980 shock’s

impact on the firm’s apparent fixed effect would dwindle and so would the endogeneity problem.

There are two ways to work around this endogeneity. One, at the heart of difference GMM, is to transform

the data to remove the fixed effects. The other is to instrument yi,t−1 and any other similarly endogenous

variables with variables thought uncorrelated with the fixed effects. System GMM incorporates that strategy

and we will return to it.

An intuitive first attack on the fixed effects is to draw them out of the error term by entering dummies

for each individual—the so-called Least Squares Dummy Variables (LSDV) estimator:

. xi: regress n nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr* i.id
i.id _Iid_1-140 (naturally coded; _Iid_1 omitted)

Source SS df MS Number of obs = 751
F(155, 595) = 983.39

Model 1345.63898 155 8.68154179 Prob > F = 0.0000
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Residual 5.25277539 595 .008828194 R-squared = 0.9961
Adj R-squared = 0.9951

Total 1350.89175 750 1.801189 Root MSE = .09396

n Coef. Std. Err. t P>|t| [95% Conf. Interval]

nL1 .7329476 .039304 18.65 0.000 .6557563 .810139
nL2 -.1394773 .040026 -3.48 0.001 -.2180867 -.0608678

w -.5597445 .057033 -9.81 0.000 -.6717551 -.4477339
wL1 .3149987 .0609756 5.17 0.000 .1952451 .4347522

k .3884188 .0309544 12.55 0.000 .3276256 .4492119
kL1 -.0805185 .0384648 -2.09 0.037 -.1560618 -.0049751
kL2 -.0278013 .0328257 -0.85 0.397 -.0922695 .036667
ys .468666 .1231278 3.81 0.000 .2268481 .7104839

ysL1 -.6285587 .15796 -3.98 0.000 -.9387856 -.3183318
ysL2 .0579764 .1345353 0.43 0.667 -.2062454 .3221982

yr1976 (dropped)
yr1977 (dropped)
yr1978 (dropped)
yr1979 .0046562 .0137521 0.34 0.735 -.0223523 .0316647
yr1980 .0112327 .0164917 0.68 0.496 -.0211564 .0436218
yr1981 -.0253693 .0217036 -1.17 0.243 -.0679942 .0172557
yr1982 -.0343973 .0223548 -1.54 0.124 -.0783012 .0095066
yr1983 -.0280344 .0240741 -1.16 0.245 -.0753149 .0192461
yr1984 -.0119152 .0261724 -0.46 0.649 -.0633167 .0394862
_Iid_2 .2809286 .1197976 2.35 0.019 .0456511 .5162061
_Iid_3 .1147461 .0984317 1.17 0.244 -.0785697 .308062

.
(remaining firm dummies omitted)
.

_cons 1.821028 .495499 3.68 0.000 .8478883 2.794168

Or we could take advantage of another Stata command to do the same thing more succinctly:

. xtreg n nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr*, fe

A third way to get nearly the same result is to partition the regression into two steps, first “partialling” the

firm dummies out of the other variables with the Stata command xtdata, then running the final regression

with those residuals. This partialling out applies a mean-deviations transform to each variable, where the

mean is computed at the level of the firm. OLS on the data so transformed is the Within Groups estimator.

It generates the same coefficient estimates, but standard errors that are slightly off because they do not take

the pre-transformation into account6:

. xtdata n nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr*, fe

. regress n nL1 nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr*

Source SS df MS Number of obs = 751
F( 16, 734) = 180.44

Model 20.661288 16 1.2913305 Prob > F = 0.0000
Residual 5.25277539 734 .00715637 R-squared = 0.7973

Adj R-squared = 0.7929
Total 25.9140634 750 .034552084 Root MSE = .0846

n Coef. Std. Err. t P>|t| [95% Conf. Interval]

6Since xtdata modifies the data set, it needs to be reloaded to copy later examples.
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nL1 .7329476 .0353873 20.71 0.000 .6634753 .80242
nL2 -.1394773 .0360373 -3.87 0.000 -.2102258 -.0687287

w -.5597445 .0513496 -10.90 0.000 -.6605541 -.4589349
wL1 .3149987 .0548993 5.74 0.000 .2072204 .422777

k .3884188 .0278697 13.94 0.000 .3337049 .4431327
kL1 -.0805185 .0346317 -2.32 0.020 -.1485076 -.0125294
kL2 -.0278013 .0295545 -0.94 0.347 -.0858227 .0302202
ys .468666 .1108579 4.23 0.000 .2510297 .6863023

ysL1 -.6285587 .142219 -4.42 0.000 -.9077631 -.3493543
ysL2 .0579764 .1211286 0.48 0.632 -.1798234 .2957762

yr1976 (dropped)
yr1977 (dropped)
yr1978 (dropped)
yr1979 .0046562 .0123816 0.38 0.707 -.0196515 .0289639
yr1980 .0112327 .0148483 0.76 0.450 -.0179175 .0403829
yr1981 -.0253693 .0195408 -1.30 0.195 -.0637318 .0129932
yr1982 -.0343973 .0201271 -1.71 0.088 -.0739109 .0051162
yr1983 -.0280344 .021675 -1.29 0.196 -.0705869 .0145181
yr1984 -.0119152 .0235643 -0.51 0.613 -.0581766 .0343461
_cons 1.79212 .4571846 3.92 0.000 .8945748 2.689665

But Within Groups does not eliminate dynamic panel bias (Nickell 1981; Bond 2002). Under the Within

Groups transformation, the lagged dependent variable becomes y∗i,t−1 = yi,t−1 − 1
T−1 (yi2 + ... + yiT ) while

the error becomes v∗it = vit − 1
T−1 (vi2 + ... + viT ). (The use of the lagged dependent variable as a regressor

restricts the sample to t = 2, . . ., T .) The problem is that the yi,t−1 term in y∗i,t−1 correlates negatively with

the − 1
T−1vi,t−1 in v∗it while, symmetrically, the − 1

T−1yit and vit terms also move together.7

Worse, one cannot attack the continuing endogeneity by instrumenting y∗i,t−1 with lags of yi,t−1 (a strategy

we will turn to soon) because they too are embedded in the transformed error v∗it. Again, if T were large

then the − 1
T−1vi,t−1 and − 1

T−1yit terms above would be insignificant and the problem would disappear.

In simulations, Judson and Owen (1999) find a bias equal to 20% of the coefficient of interest even when

T = 30.

Interestingly, where in our initial naive OLS regression the lagged dependent variable was positively

correlated with the error, biasing its coefficient estimate upward, the opposite is the case now. Notice that

in the Stata examples, the estimate for the coefficient on lagged employment fell from 1.045 to 0.733. Good

estimates of the true parameter should therefore lie in the range between these values—or at least near

it, given that these numbers are themselves point estimates with associated confidence intervals. As Bond

(2002) points out, this provides a useful check on results from theoretically superior estimators.

Kiviet (1995) argues that the best way to handle dynamic panel bias is to perform LSDV, then correct

the results for the bias, which he finds can be predicted with surprising precision. However, the approach he

advances works only for balanced panels and does not address the potential endogeneity of other regressors.
7In fact, there are many other correlating term pairs, but their impact is second-order because both terms in those pairs

contain a 1
T−1

factor.
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As a result, the more practical strategy has been to develop estimators that theoretically need no cor-

rection. What is needed to directly remove dynamic panel bias is a different transformation of the data, one

that expunges fixed effects while avoiding the propensity of the Within Groups transformation to make every

observation of y∗ endogenous to every other for a given individual. There are many potential candidates. In

fact, if the observations are sorted by individual within the data matrices X and Y then fixed effects can be

purged by left multiplying them by any block-diagonal matrix whose blocks each have width T and whose

rows each sum to zero. (It can be checked that such matrices map individual dummies to 0, thus purging

fixed effects.) How to choose? The transformation should have full row rank so that no further information

is lost. It should make the transformed variables minimally dependent on lagged observations of the original

variables, so that they remain available as instruments. In other words, the blocks of the matrix should be

upper triangular, or nearly so. A subtle, third criterion is that the transformation should be resilient to

missing data—an idea we will clarify momentarily.

Two transformations are commonly used; both are relatively canonical. One is the first-difference trans-

form, which gives its name to “difference GMM.” It is effected by IN ⊗M∆ where IN is the identity matrix

of order N and M∆ consists of a diagonal of −1’s with a diagonal of 1’s just to the right. Applying the

transform to (15) gives:

∆yit = α∆yi,t−1 + ∆x′itβ + ∆vit

Though the fixed effects are gone, the lagged dependent variable is still endogenous, since the yi,t−1 term

in ∆yi,t−1 = yi,t−1 − yi,t−2 correlates with the vi,t−1 in ∆vit = vit − vi,t−1. Likewise, any predetermined

variables in x that are not strictly exogenous become potentially endogenous because they too may be related

to vi,t−1. But unlike with the mean-deviations transform, deeper lags of the regressors remain orthogonal to

the error, and available as instruments.

The first-difference transform does have a weakness. It magnifies gaps in unbalanced panels. If some yit

is missing, for example, then both ∆yit and ∆yi,t+1 are missing in the transformed data. One can construct

data sets that completely disappear in first differences. This motivates the second common transformation,

called “forward orthogonal deviations” or “orthogonal deviations” (Arellano and Bover 1995). Instead of

subtracting the previous observation from the contemporaneous one, it subtracts the average of all future

available observations of a variable. No matter how many gaps, it is computable for all observations except

the last for each individual, so it minimizes data loss. And since lagged observations do not enter the formula,
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they are valid as instrumentss. To be precise, if w is a variable then the transform is:

w⊥
i,t+1 ≡ cit

(
wit −

1
Tit

∑
s>t

wis

)
. (16)

where the sum is taken over available future observations, Tit is the number of such observations, and the

scale factor cit is
√

Tit/ (Tit + 1). In a balanced panel, the transformation can be written cleanly as IN⊗M⊥,

where

M⊥ =



√
T−1

T − 1√
T (T−1)

− 1√
T (T−1)

. . .√
T−2
T−1 − 1√

(T−1)(T−2)
. . .√

T−3
T−2 . . .

. . .


.

One nice property of this transformation is that if the wit are independently distributed before transfor-

mation, they remain so after. (The rows of M⊥ are orthogonal to each other.) The choice of cit further

assures that if the wit are not only independent but identically distributed, this property too persists. In

other words, M⊥M′
⊥ = I.8 This is not the case with differencing, which tends to make successive errors

correlated even if they are uncorrelated before transformation—∆vit = vit − vi,t−1 is mathematically re-

lated to ∆vi,t−1 = vi,t−1 − vi,t−2 via the shared vi,t−1 term. However, researchers typically do not assume

homoskedasticity in applying these estimators, so this property matters less than the resilience to gaps. In

fact, Arellano and Bover show that in balanced panels, any two transformations of full row rank will yield

numerically identical estimators, holding the instrument set fixed.

We will use the ∗ superscript to indicate data transformed by differencing or orthogonal deviations. The

appearance of the t+1 subscript instead of t on the left side of (16) reflects the standard software practice of

storing orthogonal deviations–transformed variables one period late, for consistency with the first difference

transform. With this definition, both transforms effectively drop the first observations for each individual;

and for both, observations wi,t−2 and earlier are the ones absent from the formula for w∗
it, making them valid

instruments.

3.2 Instrumenting with lags

As emphasized at the top of this section, we are building an estimator for general application, in which we

choose not to assume that the researcher has excellent instruments waiting in the wings. So we must draw
8If Var [vit] = I then Var [M⊥vit] = E

[
M⊥vitv

′
itM

′
⊥

]
= M⊥ E

[
vitv

′
it

]
M′

⊥ = M⊥M′
⊥.
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instruments from within the dataset. Natural candidate instruments for y∗i,t−1 are yi,t−2 and, if the data

are transformed by differencing, ∆yi,t−2. In the differenced case, for example, both yi,t−2 and ∆yi,t−2 are

mathematically related to ∆yi,t−1 = yi,t−1 − yi,t−2 but not to the error term ∆vit = vit − vi,t−1—as long as

the vit are not serially correlated (see subsection 3.5). The simplest way to incorporate either instrument is

with 2SLS, which leads us to the Anderson-Hsiao (1981) “difference” and “levels” estimators. Of these, the

levels estimator, instrumenting with yi,t−2 instead of ∆yi,t−2, seems preferable for maximizing sample size.

∆yi,t−2 is in general not available until t = 4 whereas yi,t−2 is available at t = 3, and an additional time

period of data is significant in short panels. Returning to the employment example, we can implement the

Anderson-Hsiao levels estimator using the Stata command ivreg:

. ivreg D.n (D.nL1= nL2) D.(nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr1979 yr1980 yr1981 yr1982 yr1983)

Instrumental variables (2SLS) regression

Source SS df MS Number of obs = 611
F( 15, 595) = 5.84

Model -24.6768882 15 -1.64512588 Prob > F = 0.0000
Residual 37.2768667 595 .062650196 R-squared = .

Adj R-squared = .
Total 12.5999785 610 .020655702 Root MSE = .2503

D.n Coef. Std. Err. t P>|t| [95% Conf. Interval]

nL1
D1. 2.307626 1.999547 1.15 0.249 -1.619403 6.234655
nL2
D1. -.2240271 .1814343 -1.23 0.217 -.5803566 .1323025

w
D1. -.8103626 .2653017 -3.05 0.002 -1.331404 -.2893209
wL1
D1. 1.422246 1.195245 1.19 0.235 -.9251669 3.769658

k
D1. .2530975 .1466736 1.73 0.085 -.0349633 .5411584
kL1
D1. -.5524613 .6237135 -0.89 0.376 -1.777409 .6724864
kL2
D1. -.2126364 .2429936 -0.88 0.382 -.6898658 .264593
ys

D1. .9905803 .4691945 2.11 0.035 .0691015 1.912059
ysL1
D1. -1.937912 1.457434 -1.33 0.184 -4.800252 .9244283

ysL2
D1. .4870838 .5167524 0.94 0.346 -.5277967 1.501964

yr1979
D1. .0467148 .045459 1.03 0.305 -.0425649 .1359944

yr1980
D1. .0761344 .0633265 1.20 0.230 -.0482362 .2005051

yr1981
D1. .022623 .0564839 0.40 0.689 -.088309 .1335549

yr1982
D1. .0127801 .0555727 0.23 0.818 -.0963624 .1219226

yr1983
D1. .0099072 .0462205 0.21 0.830 -.080868 .1006824

_cons .0159337 .0277097 0.58 0.565 -.038487 .0703545

Instrumented: D.nL1
Instruments: D.nL2 D.w D.wL1 D.k D.kL1 D.kL2 D.ys D.ysL1 D.ysL2 D.yr1979

D.yr1980 D.yr1981 D.yr1982 D.yr1983 nL2
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This is the first consistent estimate of the employment model, given our assumptions. It performs rather

poorly, with a point estimate on the lagged dependent variable of 2.308, well outside the credible 0.733−1.045

range, and a standard error almost as large.

To improve efficiency, we can take the Anderson-Hsiao approach further, using deeper lags of the depen-

dent variable as additional instruments. To the extent this introduces more information, it should improve

efficiency. But in standard 2SLS, the deeper the lags used, the smaller the sample, since observations for

which lagged observations are unavailable are dropped.

Working in the GMM framework, Holtz-Eakin, Newey, and Rosen (1988) show a way around this trade-

off. As an example, standard 2SLS would enter the instrument yi,t−2 into Z in a single column, as a stack

of blocks like

Zi =



.

yi1

...

yi,T−2


.

The “.” represents a missing value, which forces the deletion of that row from the data set. (Recall that

that the transformed variables being instrumented begin at t = 2, so the vector above starts at t = 2 and

only its first observation lacks yi,t−2.) Holtz-Eakin, Newey, and Rosen instead build a set of instruments

from the twice-lag of y, one for each time period, and substitute zeros for missing observations, resulting in

“GMM-style” instruments: 

0 0 · · · 0

yi1 0 · · · 0

0 yi2 · · · 0
...

...
. . .

...

0 0 · · · yi,T−2


.

(In unbalanced panels, one also substitutes zeros for other missing values.) These substitutions might seem

like a dubious doctoring of the data in response to missing information. But the resulting columns of Z,

each taken as orthogonal to the transformed errors, correspond to a set of meaningful moment conditions:

E
[
Z′Ê

]
= 0 ⇒

∑
i

yi,t−2ê
∗
it = 0 for each t ≥ 3,
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which are based on an expectation we believe: E [yi,t−2ε
∗
it] = 0. Alternatively, one could “collapse” this

instrument set into a single column: 

0

yi1

...

yi,T−2


.

This embodies the same expectation but conveys slightly less information, since it generates a single moment

condition,
∑
i,t

yi,t−2ê
∗
it = 0.

Having eliminated the trade-off between lag depth and sample depth, it becomes practical to include all

valid lags of the untransformed variables as instruments, where available. For endogenous variables, that

means lags 2 and up. For a variable w that is predetermined but not strictly exogenous, lag 1 is also valid,

since v∗it is a function of errors no older than vi,t−1 and wi,t−1 is potentially correlated only with errors vi,t−2

and older. In the case of yi,t−1, which is predetermined, realizations yi,t−2 and earlier can be used, giving

rise to stacked blocks in the instrument matrix of the form:

0 0 0 0 0 0 · · ·

yi1 0 0 0 0 0 · · ·

0 yi2 yi1 0 0 0 · · ·

0 0 0 yi3 yi2 yi1 · · ·
...

...
...

...
...

...
. . .


or, collapsed,



0 0 0 · · ·

yi1 0 0 · · ·

yi2 yi1 0 · · ·

yi3 yi2 yi1 · · ·
...

...
...

. . .


.

Since in the standard, un-collapsed form each instrumenting variable generates one column for each time

period and lag available to that time period, the number of instruments is quadratic in T . To limit the

instrument count (c.f. subsection 2.6), one can restrict the lag ranges used in generating these instrument

sets. Or one can collapse them; this is non-standard but available in xtabond2.9

Although these instrument sets are part of what defines difference (and system) GMM, researchers are

free to incorporate other instruments instead or in addition. Given the importance of good instruments, it

is worth giving serious thought to all options.

Returning to the employment example, the command line below expands on Anderson-Hsiao by gener-

ating “GMM-style” instruments for the lags of n, then uses them in a 2SLS regression in differences. It
9After conceiving of such instrument sets and adding a “collapse” option to xtabond2, I discovered precedents. Adapting

Arellano and Bond’s (1998) dynamic panel package, DPD for Gauss, and performing system GMM, Calderón, Chong, and
Loayza (2002) use such instruments, followed by Beck and Levine (2004) and Carkovic and Levine (2005).
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treats all other regressors as exogenous; they instrument themselves, appearing in both the regressor matrix

X and the instrument matrix Z. So Z contains both “GMM-style” instruments and ordinary one-column

“IV-style” ones:

. forvalues yr=1978/1984 {
2. forvalues lag = 2 / ‘= ‘yr’ - 1976’ {
3. quietly generate z‘yr’L‘lag’ = L‘lag’.n if year == ‘yr’
4. }
5.}

. quietly recode z* (. = 0) /* replace missing with zero */

. ivreg D.n D.(nL2 w wL1 k kL1 kL2 ys ysL1 ysL2 yr1979 yr1980 yr1981 yr1982 yr1983) (D.(nL1 nL2) = z*), nocons

Instrumental variables (2SLS) regression

Source SS df MS Number of obs = 611
F( 15, 596) = .

Model 8.15714895 15 .54380993 Prob > F = .
Residual 7.29699829 596 .012243286 R-squared = .

Adj R-squared = .
Total 15.4541472 611 .025293203 Root MSE = .11065

D.n Coef. Std. Err. t P>|t| [95% Conf. Interval]

nL1
D1. .2917489 .147383 1.98 0.048 .0022957 .5812021
nL2
D1. -.0653571 .0439636 -1.49 0.138 -.1516996 .0209854
D1. (dropped)

w
D1. -.5863952 .0563631 -10.40 0.000 -.6970897 -.4757008
wL1
D1. .2118663 .1073618 1.97 0.049 .0010128 .4227198

k
D1. .3876148 .0324627 11.94 0.000 .3238596 .45137
kL1
D1. .0735275 .0550193 1.34 0.182 -.0345277 .1815828
kL2
D1. .0196641 .0369952 0.53 0.595 -.0529928 .0923209
ys

D1. .6262124 .1178685 5.31 0.000 .3947243 .8577005
ysL1
D1. -.4593255 .1657888 -2.77 0.006 -.7849268 -.1337242

ysL2
D1. .0957105 .1304319 0.73 0.463 -.1604514 .3518725

yr1979
D1. .0076199 .0127743 0.60 0.551 -.0174682 .0327081

yr1980
D1. .021176 .01786 1.19 0.236 -.0139003 .0562522

yr1981
D1. -.0017659 .0228938 -0.08 0.939 -.0467283 .0431965

yr1982
D1. -.0165253 .0217314 -0.76 0.447 -.0592049 .0261542

yr1983
D1. -.0150884 .0177795 -0.85 0.396 -.0500065 .0198297

Instrumented: D.nL1 D.nL2
Instruments: D.nL2 D.w D.wL1 D.k D.kL1 D.kL2 D.ys D.ysL1 D.ysL2 D.yr1979

D.yr1980 D.yr1981 D.yr1982 D.yr1983 z1978L2 z1979L2 z1979L3
z1980L2 z1980L3 z1980L4 z1981L2 z1981L3 z1981L4 z1981L5
z1982L2 z1982L3 z1982L4 z1982L5 z1982L6 z1983L2 z1983L3
z1983L4 z1983L5 z1983L6 z1983L7 z1984L2 z1984L3 z1984L4
z1984L5 z1984L6 z1984L7 z1984L8
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Although this estimate is in theory not only consistent but more efficient than Anderson-Hsiao, it still seems

poorly behaved. Now the coefficient estimate for lagged employment has plunged to 0.292, about 3 standard

errors below the 0.733 − 1.045 range. What is going on? As discussed in subsection 2.2, 2SLS is a good

estimator under homoskedasticity. But after differencing, the disturbances v∆
it are far from i.i.d., far enough

to greatly distort estimation. Feasible GMM directly addresses this problem, modeling the error structure

more realistically, which makes it both more efficient in theory and better-behaved in practice.10

3.3 Applying GMM

The only way errors could reasonably be expected to be spherical in “difference GMM” is if a) the untrans-

formed errors are i.i.d., which is usually not assumed, and b) the orthogonal deviations transform is used, so

that the errors remain spherical. Otherwise, as subsection 2.2 showed, FEGMM is asymptotically superior.

To implement FEGMM, however, we must estimate Ω∗, the covariance matrix of the transformed errors—

twice for two-step GMM. For the first step, the least arbitrary choice of H, the a priori estimate of Ω∗ (see

subsection 2.3), is based, ironically, on the assumption that the vit are i.i.d. after all. Using this, and letting

vi refer to the vector idiosyncratic errors for individual i, we set H to IN ⊗Var [v∗i |Z] where

Var [v∗i |Z] = Var [M∗vi|Z] = M∗ Var [viv′i|Z]M′
∗ = M∗M′

∗. (17)

For orthogonal deviations, this is I, as discussed in subsection 3.1. For differences, it is:



2 −1

−1 2 −1

−1 2
. . .

. . . . . .


. (18)

As for the second FEGMM step, here we proxy Ω∗ with the robust, clustered estimate in (9), which is

built on the assumption that errors are only correlated within individuals, not across them. For this reason,

it is almost always wise to include time dummies in order to remove universal time-related shocks from the

errors.

With these choices, we reach the classic Arellano-Bond (1991) difference GMM estimator for dynamic

10Apparent bias toward 0 in the coefficient estimate could also indicate weak instrumentation, a concern that motivates
“System GMM,” discussed later.
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panels. As the name suggests, Arellano and Bond originally proposed using the differencing transform. When

orthogonal deviations are used instead, perhaps the estimator ought to be called “deviations GMM”—but

the term is not common.

Pending the full definition of the xtabond2 syntax in secion 4, this Stata session shows how to use the

command to estimate the employment equation from before. First note that the last estimates in the previous

subsection can actually be had from xtabond2 by typing:

xtabond2 n L.n L2.n w L.w L(0/2).(k ys) yr*, gmmstyle(L.n) ivstyle(L2.n w L.w L(0/2).(k ys) yr*) h(1)
> noleveleq nocons small

The h(1) option here specifies H = I, which embodies the incorrect assumption of homoskedasticity. If we

drop that, H defaults to the form given in (18), and the results greatly improve:

. xtabond2 n L.n L2.n w L.w L(0/2).(k ys) yr*, gmmstyle(L.n) ivstyle(L2.n w L.w
> L(0/2).(k ys) yr*) noleveleq nocons

Dynamic panel-data estimation, one-step difference GMM

Group variable: id Number of obs = 611
Time variable : year Number of groups = 140
Number of instruments = 41 Obs per group: min = 4
F(16, 595) = 42.63 avg = 4.36
Prob > F = 0.000 max = 6

Coef. Std. Err. t P>|t| [95% Conf. Interval]

n
L1. .2689418 .1466334 1.83 0.067 -.0190402 .5569238
L2. -.0669834 .0437388 -1.53 0.126 -.1528845 .0189177

w
--. -.5723355 .0581178 -9.85 0.000 -.6864766 -.4581945
L1. .2112242 .1050951 2.01 0.045 .0048217 .4176266

k
--. .3843826 .03236 11.88 0.000 .3208289 .4479363
L1. .0796079 .0545831 1.46 0.145 -.027591 .1868069
L2. .0231675 .0369709 0.63 0.531 -.0494419 .0957768
ys

--. .5976429 .1212734 4.93 0.000 .3594669 .8358189
L1. -.4806272 .1635671 -2.94 0.003 -.8018662 -.1593882
L2. .0581721 .1358053 0.43 0.669 -.2085439 .3248882

yr1978 .0429548 .0433702 0.99 0.322 -.0422224 .128132
yr1979 .047082 .0415766 1.13 0.258 -.0345726 .1287367
yr1980 .0566061 .0395988 1.43 0.153 -.0211644 .1343766
yr1981 .0263295 .0362365 0.73 0.468 -.0448375 .0974966
yr1982 .0018456 .0283768 0.07 0.948 -.0538852 .0575765
yr1983 -.0062288 .0197772 -0.31 0.753 -.0450704 .0326129

Arellano-Bond test for AR(1) in first differences: z = -1.19 Pr > z = 0.232
Arellano-Bond test for AR(2) in first differences: z = -0.15 Pr > z = 0.882

Sargan test of overid. restrictions: chi2(25) = 44.85 Prob > chi2 = 0.009

Difference-in-Sargan tests of exogeneity of instrument subsets:
Instrument group: ivstyle(L2.n w L.w L(0/2).(k ys) yr*)

Sargan test excluding group: chi2(10) = 23.54 Prob > chi2 = 0.009
Difference (null H = exogenous): chi2(15) = 21.32 Prob > chi2 = 0.019

Warning: Sargan/Hansen tests are weak when instruments are many.

26



To obtain two-step estimates, we would merely change “robust” to “twostep”. These commands exactly

match the one- and two-step results in Arellano and Bond (1991).11 Even so, the one-step coefficient on

lagged employment of 0.686 (and the two-step one of 0.629) is not quite in the hoped-for range, which hints

at specification problems. Interestingly, Blundell and Bond (1998) write that they “do not expect wages

and capital to be strictly exogenous in our employment application,” but the above regressions assume just

that. If we instrument them too, in GMM style, then the coefficient on lagged employment moves into the

credible range:

. xtabond2 n L.n L2.n w L.w L(0/2).(k ys) yr*, gmmstyle(L.(n w k)) ivstyle(L(0/
> 2).ys yr*) noleveleq nocons robust small

Dynamic panel-data estimation, one-step difference GMM

Group variable: id Number of obs = 611
Time variable : year Number of groups = 140
Number of instruments = 90 Obs per group: min = 4
F(16, 140) = 88.07 avg = 4.36
Prob > F = 0.000 max = 6

Robust
Coef. Std. Err. t P>|t| [95% Conf. Interval]

n
L1. .8179867 .0846104 9.67 0.000 .6507074 .9852659
L2. -.1122756 .0494386 -2.27 0.025 -.2100183 -.0145329

w
--. -.6816685 .1403164 -4.86 0.000 -.9590816 -.4042554
L1. .6557083 .1991534 3.29 0.001 .2619713 1.049445

k
--. .3525689 .1198649 2.94 0.004 .1155895 .5895483
L1. -.1536626 .084922 -1.81 0.073 -.321558 .0142328
L2. -.0304529 .0316251 -0.96 0.337 -.0929774 .0320715
ys

--. .6509498 .1865705 3.49 0.001 .2820899 1.01981
L1. -.9162028 .2597349 -3.53 0.001 -1.429713 -.4026929
L2. .2786584 .1825815 1.53 0.129 -.0823149 .6396318

yr1978 .0238987 .0362127 0.66 0.510 -.0476957 .0954931
yr1979 .0352258 .0346257 1.02 0.311 -.033231 .1036826
yr1980 .0502675 .035985 1.40 0.165 -.0208768 .1214119
yr1981 .0102721 .0344437 0.30 0.766 -.0578248 .0783691
yr1982 -.0111623 .0260542 -0.43 0.669 -.0626727 .0403482
yr1983 -.0069458 .0188567 -0.37 0.713 -.0442265 .030335

Arellano-Bond test for AR(1) in first differences: z = -5.39 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = -0.78 Pr > z = 0.436

Hansen test of overid. restrictions: chi2(74) = 73.72 Prob > chi2 = 0.487

Difference-in-Sargan tests of exogeneity of instrument subsets:
Instrument group: ivstyle(L(0/2).ys yr*)

Hansen test excluding group: chi2(65) = 56.99 Prob > chi2 = 0.750
Difference (null H = exogenous): chi2(9) = 16.72 Prob > chi2 = 1.000

Warning: Sargan/Hansen tests are weak when instruments are many.

11Table 4, columns (a1) and (a2).
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3.4 Instrumenting with variables orthogonal to the fixed effects

Arellano and Bond compare the performance of one- and two-step difference GMM to the OLS, Within

Groups, and Anderson-Hsiao difference and levels estimators using Monte Carlo simulations of 7×100 panels.

Difference GMM exhibits the least bias and variance in estimating the parameter of interest, although in

their tests the Anderson-Hsiao levels estimator does nearly as well for most parameter choices. But there

are many degrees of freedom in designing such tests. As Blundell and Bond (1998) demonstrate in separate

simulations, if y is close to a random walk, then difference GMM performs poorly because past levels convey

little information about future changes, so that untransformed lags are weak instruments for transformed

variables.

To increase efficiency (under an additional assumption), Blundell and Bond develop an approach outlined

in Arellano and Bover (1995), pursuing the second strategy against dynamic panel bias offered in subsection

3.1. Instead of transforming the regressors to expunge the fixed effects, it transforms—differences—the

instruments to make them exogenous to the fixed effects. This is valid assuming that changes in any

instrumenting variable w are uncorrelated with the fixed effects—in symbols, that E [∆witµi] = 0 for all i

and t. This is to say, E [witµi] is time-invariant. If this holds, then ∆wi,t−1 is a valid instrument for the

variables in levels:

E [∆wi,t−1εit] = E [∆wi,t−1µi] + E [wi,t−1vit]− E [wi,t−2vit] = 0 + 0− 0.

In a nutshell, where Arellano-Bond instruments differences (or orthogonal deviations) with levels, Blundell-

Bond instruments levels with differences. For random walk–like variables, past changes may indeed be more

predictive of current levels than past levels are of current changes, so that the new instruments are more

relevant. Again, validity depends on the assumption that the vit are not serially correlated, else wi,t−1 and

wi,t−2, which may correlate with past and contemporary errors, may then correlate with future ones as well.

In general, if w is endogenous, ∆wi,t−1 is available as an instrument since ∆wi,t−1 = wi,t−1 −wi,t−2 should

not correlate with vit; earlier realizations of ∆w can instrument as well. And if w is predetermined, the

contemporaneous ∆wit = wit − wi,t−1 is also valid, since E [witvit] = 0.

But the new assumption is one of stationarity, and is not trivial. Notice that the Blundell-Bond approach

instruments yi,t−1 with ∆yi,t−1. Lagged growth-in-y becomes an instrument in a growth-in-y regression—

yet we assume that both ∆yi,t−1 and εit contain the fixed effect µi, which makes the proposition that the

instrument is orthogonal to the error, that E [∆yi,t−1εit] = 0, counterintuitive. It can be, but only if the data-
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generating process is such that the fixed effect and the autoregressive process governed by α, the coefficient

on the lagged dependent variable, offset each other in expectation, like investment and depreciation in a

Solow growth model steady state.

Blundell and Bond formalize this idea. They stipulate that α must have absolute value less than unity,

so that the process is convergent. Then they derive the assumption E [∆witµi] = 0 from a more precise one

about the initial conditions of the data generating process. It is easiest to state for the simple autoregressive

model without controls: yit = αyi,t−1 + µi + vit. Conditioning on µi, yit can be expected to converge over

time to µi/ (1− α)—the point where the fixed effect and the autoregressive decay just offset each other.12

For time-invariance of E [yitµi] to hold, the deviations of the initial observations, yi1, from these long-term

convergent values must not correlate with the fixed effects: E [µi(yi1 − µi/ (1− α))] = 0. Otherwise, the

“regression to the mean” that will occur, whereby individuals with higher initial deviations will have slower

subsequent growth as they converge to the long-term level, will correlate with the fixed effects in the error. If

this condition is satisfied in the first period then it will be in subsequent ones as well. Generalizing to models

with controls x, this assumption about initial conditions is that, controlling for the covariates, faster-growing

individuals (ones with larger fixed effects) are not systematically closer or farther from their steady states

than slower-growing ones.

In order to exploit the new moment conditions for the data in levels while retaining the original Arellano-

Bond ones for the transformed equation, Blundell and Bond design a system estimator. Concretely, it

involves building a stacked data set with twice the observations; in each individual’s data, the transformed

observations go up top, say, and the untransformed below. Formally, we produce the augmented, transformed

data set by left-multiplying the original by an augmented transformation matrix,

M+
∗ =

 M∗

I

 ,

where M∗ = M∆ or M⊥.. Thus, for individual i, the augmented data set is:

X+
i =

 X∗
i

Xi

 , Y+
i =

 Y∗
i

Yi

 .

The GMM formulas and the software still treat the system as a single-equation estimation problem since the
12This can be seen by solving E [yit|µi] = E [yi,t−1|µi], using yit = αyi,t−1 + µi + vit.
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same linear functional relationship is believed to apply in both the transformed and untransformed variables.

In system GMM, one can include time-invariant regressors, which would disappear in difference GMM.

Asymptotically, this does not affect the coefficients estimates for other regressors. This is because all in-

struments for the levels equation are assumed to be orthogonal to fixed effects, thus to all time-invariant

variables; in expectation, removing them from the error term therefore does not affect the moments that are

the basis for identification. However, it is still a mistake to introduce explicit fixed effects dummies, for they

would still effectively cause the With Groups transformation to be applied as described in subsection 3.1. In

fact any dummy that is 0 for almost all individuals, or 1 for almost all, might cause bias in the same way,

especially if T is very small.

The construction of the augmented instrument matrix Z+ is somewhat more complicated. For a single-

column, IV-style instrument, a strictly exogenous variable w, with observation vector W, could be trans-

formed and entered like the regressors above,

 W∗

W

 , (19)

imposing the moment condition
∑

w∗
itê

∗
it +

∑
witêit = 0. Alternative arrangements, implying slightly differ-

ent conditions include,  0

W

 and

 W∗ 0

0 W

 . (20)

As for GMM-style instruments, the Arellano-Bond ones for the transformed data are set to zero for levels

observations, and the new instruments for the levels data are set to zero for the transformed observations.

One could enter a full GMM-style set of differenced instruments for the levels equation, using all available

lags, in direct analogy with the levels instruments entered for the transformed equation. However, most of

these would be mathematically redundant in system GMM. The figure below shows why, with the example

of a predetermined variable w under the difference transform.13 The D symbols link moments equated

by the Arellano-Bond conditions on the differenced equation. The upper left one, for example, asserts

E [wi1εi2] = E [wi1εi1], which is equivalent to the Arellano-Bond moment condition, E [wi1∆εi2] = 0. The

‖L symbols do the same for the new Arellano-Bover conditions:

13Tue Gorgens devised these diagrams.
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E [wi1εi1] D E [wi1εi2] D E [wi1εi3] D E [wi1εi4]
‖L

E [wi2εi1] E [wi2εi2] D E [wi2εi3] D E [wi2εi4]
‖L

E [wi3εi1] E [wi3εi2] E [wi3εi3] D E [wi3εi4]
‖L

E [wi4εi1] E [wi4εi2] E [wi4εi3] E [wi4εi4]

One could add more vertical links to the upper triangle of the grid, but it would add no new information.

The ones included above embody the moment restrictions
∑
i

∆witεit = 0 for each t > 1. If w is endogenous,

those conditions become invalid since the wit in ∆wit is endogenous to the vit in εit. Lagging w one period

side-steps this endogeneity, yielding the valid moment expectations
∑
i

∆wi,t−1εit = 0 for each t > 2:

E [wi1εi1] E [wi1εi2] D E [wi1εi3] D E [wi1εi4]
‖L

E [wi2εi1] E [wi2εi2] E [wi2εi3] D E [wi2εi4]
‖L

E [wi3εi1] E [wi3εi2] E [wi3εi3] E [wi3εi4]

E [wi4εi1] E [wi4εi2] E [wi4εi3] E [wi4εi4]

If w is predetermined, the new moment conditions translate into the system GMM instrument matrix with

blocks of the form 

0 0 0 0 · · ·

4wi2 0 0 0 · · ·

0 4wi3 0 0 · · ·

0 0 4wi4 0 · · ·
...

...
...

...
. . .


or , collapsed,



0

4wi2

4wi3

4wi4

...


.

Here, the first row of the matrix corresponds to t = 1. If w is endogenous, then the non-zero elements are

shifted down one row.

Again, the last item of business is defining H, which now must be seen as a preliminary variance estimate

for the augmented error vector, E+. As before, in order to minimize arbitrariness we set H to what Var [E+]

would be in the simplest case. This time, however, assuming homoskedasticity with unit variance does not tie

our hands enough, because the fixed effects are present in the levels errors. Consider, for example, Var [εit],
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for some i, t, which is on the diagonal of Var [E+]. Expanding,

Var [εit] = Var [µi + vit] = Var [µi] + 2 Cov [µi, vit] + Var [vit] = Var [µi] + 0 + 1.

We must make an a priori estimate for each Var [µi]—and we choose 0. This lets us proceed as if εit = vit.

Then, paralleling the construction for difference GMM, H is block diagonal with blocks

Var
[
ε+

i

]
= Var

[
v+

i

]
= M+

∗ M+
∗
′ =

 M∗M′
∗ M∗

M′
∗ I

 , (21)

where, in the orthogonal deviations case, M∗M′
∗ = I. This is the default value of H for system GMM in

xtabond2. However, current versions of Arellano and Bond’s own estimation package, DPD, zero out the

upper right and lower left quadrants of these matrices. (Doornik, Arellano, and Bond 2002). And the original

implementation of system GMM (Blundell and Bond 1998) used H = I. These choices too are available in

xtabond2.

For an application, Blundell and Bond return to the employment equation, using the same data set

as in Arellano and Bond—and we follow suit. This time, the authors drop the deepest (two-period) lags

of employment and capital from their model, and dispense with sector-wide demand altogether. They also

switch to treating wages and capital as potentially endogenous, generating GMM-style instruments for them.

The xtabond2 command line for a one-step estimate is:

. xtabond2 n L.n L(0/1).(w k) yr*, gmmstyle(L.(n w k)) ivstyle(yr*, equation(le
> vel)) robust small

Dynamic panel-data estimation, one-step system GMM

Group variable: id Number of obs = 891
Time variable : year Number of groups = 140
Number of instruments = 113 Obs per group: min = 6
F(12, 139) = 1178.54 avg = 6.36
Prob > F = 0.000 max = 8

Robust
Coef. Std. Err. t P>|t| [95% Conf. Interval]

n
L1. .9356053 .0262951 35.58 0.000 .8836153 .9875953

w
--. -.6309761 .1180536 -5.34 0.000 -.8643889 -.3975632
L1. .4826203 .1368872 3.53 0.001 .21197 .7532705

k
--. .4839299 .0538669 8.98 0.000 .3774254 .5904344
L1. -.4243928 .0584788 -7.26 0.000 -.5400158 -.3087698

yr1977 -.0240573 .0293908 -0.82 0.414 -.082168 .0340535
yr1978 -.0176523 .0226913 -0.78 0.438 -.0625171 .0272125
yr1979 -.0026515 .0205353 -0.13 0.897 -.0432534 .0379505
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yr1980 -.0173995 .0219429 -0.79 0.429 -.0607846 .0259856
yr1981 -.0435283 .0191354 -2.27 0.024 -.0813624 -.0056942
yr1982 -.0096193 .0184903 -0.52 0.604 -.0461779 .0269393
yr1983 .0038132 .0170186 0.22 0.823 -.0298356 .0374621
_cons .5522011 .1951279 2.83 0.005 .1663985 .9380036

Arellano-Bond test for AR(1) in first differences: z = -5.46 Pr > z = 0.000
Arellano-Bond test for AR(2) in first differences: z = -0.25 Pr > z = 0.804

Hansen test of overid. restrictions: chi2(100) = 110.70 Prob > chi2 = 0.218

Difference-in-Sargan tests of exogeneity of instrument subsets:
Instrument group: GMM instruments for levels

Hansen test excluding group: chi2(79) = 84.33 Prob > chi2 = 0.320
Difference (null H = exogenous): chi2(21) = 26.37 Prob > chi2 = 1.000

Instrument group: ivstyle(yr*, equation(level))
Hansen test excluding group: chi2(93) = 107.79 Prob > chi2 = 0.140
Difference (null H = exogenous): chi2(7) = 2.91 Prob > chi2 = 1.000

Warning: Sargan/Hansen tests are weak when instruments are many.

These estimates do not match the published ones, in part because Blundell and Bond set H = I instead of

using the form in (21).14 The new point estimate of the coefficient on lagged employment is higher than that

the estimate at the end of subsection 3.3, though not statistically different going by the previous standard

errors. Moreover, it is within the desired range, and the reported standard error is half what it was before.

Since the additional assumption required for the validity of these estimates is nontrivial, it is worth

testing. The difference-in-Sargan test in the above output for the GMM-style instruments for levels is very

reassuring, with a p value of 1.000—perhaps too reassuring given the weakness of the Hansen test when

instruments are numerous.

3.5 Testing for autocorrelation

The Sargan/Hansen test for joint validity of the instruments is standard after GMM estimation. In addition,

Arellano and Bond develop a test for a phenomenon that would render some lags invalid as instruments,

namely autocorrelation in the idiosyncratic disturbance term εit. Of course, the full disturbance υit is

presumed autocorrelated because it contains fixed effects, and the estimators are designed to eliminate this

source of trouble. But if the εit are themselves serially correlated of order 1 then, for instance, yi,t−2 is

endogenous to the vi,t−1 in the error term in differences, ∆εit = vit− vi,t−1, making it an invalid instrument

after all. The researcher would need to restrict the instrument set to lags 3 and deeper of y—unless she

found order-2 serial correlation, in which case she would need to start with even deeper lags.

In order to test for autocorrelation aside from the fixed effects, the Arellano-Bond test is applied to the

residuals in differences. Since ∆vit is mathematically related to ∆vi,t−1 via the shared vi,t−1 term, negative

first-order serial correlation is expected in differences and evidence of it is uninformative. Thus to check for
14One could add an h(1) option to the command line to mimic their choice.
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first-order serial correlation in levels, we look for second-order correlation in differences, on the idea that

this will detect correlation between the vi,t−1 in ∆vit and the vi,t−2 in ∆vi,t−2. In general, we check for

serial correlation of order l in levels by looking for correlation of order l +1 in differences. Such an approach

would not work for orthogonal deviations because all residuals in deviations are mathematically interrelated,

depending as they do on many forward “lags.” So even after estimation in deviations, the test is run on

residuals in differences.

The Arellano-Bond test for autocorrelation is actually valid for any GMM regression on panel data,

including OLS and 2SLS, as long as none of the regressors is “post-determined,” depending on future distur-

bances. (A fixed effects or Within Groups regression can violate this assumption if T is small.) Also, we will

shortly see, we must assume that errors are not correlated across individuals. I wrote the command abar to

make the test available after regress, ivreg, ivreg2, newey, and newey2.15 So in deriving the test, we will

refer to a generic GMM estimate β̂A, applied to a dataset X, Y, Z, which may have been pre-transformed;

the estimator yields residuals Ê.

If W is a data matrix, let W−l be its l-lag, with zeroes for t ≤ l. The Arellano-Bond autocorrelation

test is based on the inner product 1
N

∑
i

Ê−l
i Êi, which is zero in expectation under the null of no order-l

serial correlation. Assuming errors are uncorrelated across individuals, the terms of this average are also

uncorrelated and, under suitable regularity conditions, the central limit theorem assures that

√
N

1
N

∑
i

Ê−l
i Êi =

1√
N

Ê−lÊ (22)

is asymptotically normally distribution. Notice how this statistic is constructed on the assumption that N

is large but T may not be.

To estimate the asymptotic variance of the statistic under the null, Arellano and Bond start much as

in the Windmeijer derivation above, expressing the quantity of interest as a deviation from the theoretical

value it approximates. In particular, since Y = Xβ +E = Xβ̂ + Ê, Ê = E−X
(
β̂A − β

)
. Substituting into

15I also wrote newey2; it makes Newey-West autocorrelation-robust standard errors available for 2SLS regressions. ivreg2

(Baum, Schaffer, and Stillman 2003) now includes this functionality.
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(22) gives

1√
N

Ê−lÊ =
1√
N

(
E−l −X−l

i

(
β̂A − β

))′ (
E−X

(
β̂A − β

))
=

1√
N

E−l′E− E−l′X
N

√
N
(
β̂A − β

)
−
√

N
(
β̂A − β

)′X−l′E
N

+
√

N
(
β̂A − β

)′ 1√
N

X−l′X
N

√
N
(
β̂A − β

)

The last two terms drop out as N → ∞. Why? Since β̂A is a
√

N -consistent estimate of β (Ruud 2000,

p. 546), the
√

N
(
β̂A − β

)
terms neither diverge nor converge to 0. Meanwhile, assuming x is not post-

determined, X−l′E/N goes to 0, which eliminates the third term. Finally, assuming that X−l′X/N does not

diverge, the fourth term goes to zero. If we then substitute with (3) into the second term, the expression

can be seen to converge to 1√
N

[
E−l′E−E−l′X

(
X′ZAZ′X

)−1
X′ZAZ′E

]
, whose variance is consistently

estimated by

1√
N

[
Ê
−l′

V̂ar
[
Ê
∣∣∣Z] Ê−l − 2Ê

−l′
X
(
X′ZAZ′X

)−1
X′ZAZ′V̂ar

[
Ê
∣∣∣Z] Ê−l

+ Ê
−l′

XV̂ar
[
β̂A

]
X′Ê−l

]
.

(Arellano and Bond 1991). Dividing this value into (22) to normalize it yields the Arellano-Bond z test for

serial correlation of order l.

For difference and system GMM, terms in this formula map as follows. Ê−l contains lagged, differenced

errors, with observations for the levels data zeroed out in system GMM since they are not the basis for

the test. X and Z hold the transformed and, in system GMM, augmented data set used in the estimation.

In one-step, non-robust estimation, V̂ar
[
Ê
∣∣∣Z] is σ̂2H, where σ̂ is a consistent estimate of the standard

deviation of the errors in levels. Otherwise, Ω̂β̂1
is substituted. V̂ar

[
β̂A

]
is set to the reported variance

matrix—robust or not, Windmeijer-corrected or not.16

There are two important lessons here for the researcher. The first is another reminder of the importance of

time dummies to preventing the most likely form of cross-individual correlation, contemporaneous correlation.

The test assumes no correlations in errors across individuals. Second is that the test depends on the

assumption that N is large. “Large” has no precise definition, but applying it to panels with N = 20,

for instance, seems worrisome.

In their difference GMM regressions on simulated 7 × 100 panels with AR(1), Arellano and Bond find

16In addition, in one-step, non-robust estimation in orthogonal deviations, the second V̂ar
[
Ê

∣∣∣Z]
is actually set to M⊥M∆

′

in “difference” GMM and M+
⊥M+

∆

′
in system GMM.
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that their test has greater power than the Sargan and Hansen tests to detect lagged instruments being made

invalid through autocorrelation. The test does break down, however, as the correlation falls to 0.2, where it

rejects the null of no serial correlation only half the time.

4 Implementation

4.1 Syntax

The original implementation of the difference GMM estimator was in the package DPD, written in the

Gauss programming language (Arellano and Bond 1988). An update, DPD98, incorporates system GMM.

DPD has also been implemented in the Ox language (Doornik, Arellano, and Bond 2002). In 2001, Stata

Corporation shipped xtabond in Stata 7. It performs difference GMM, but not system GMM, nor the

Windmeijer correction. In late 2003, I set out to add these features. In the end, I revamped the code and

syntax and added system GMM and the Windmeijer correction as well as other options. It was and is

compatible with Stata versions 7 and later. Unlike xtabond, which has computationally intensive sections

precompiled, xtabond2 was written purely in Stata’s interpreted ado language, which made it slow. I also

wrote abar to make the Arellano-Bond autocorrelation test available after other estimation commands. In

late 2005, I implemented xtabond2 afresh in the Mata language shipped with Stata 9; the new version runs

much faster. The latest version of the Mata code at this writing introduces a new feature, the orthogonal

deviations transform. The two implementations are bundled together and the ado version automatically

runs if Mata is not available.17

The syntax for xtabond2 is:

xtabond2 depvar varlist [if exp ] [in range ] [, level(# ) twostep robust noconstant small
noleveleq orthogonal artests(# ) arlevels h(# ) nodiffsargan nomata ivopt [ivopt ...] gmmopt [gmmopt ...]]

where gmmopt is

gmmstyle(varlist [, laglimits(# # ) collapse equation({diff | level | both}) passthru])

and ivopt is

ivstyle(varlist [, equation({diff | level | both}) passthru mz ])

Items in [brackets] are optional. Underlining indicates minimum allowed abbreviations. {Braces} enclose

lists of choices. Options after the comma may appear in any order. All varlist ’s can include time-series
17The Mata code requires Stata 9.1 or later. Version 9.0 users will be prompted to make a free upgrade.
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operators such as L. and wildcard expressions such as I*.

The if and in clauses are standard ones that restrict the sample. But they do not restrict the sample from

which lagged variables are drawn for instrument construction. The level, noconstant, small, and robust

options are also mostly standard. level controls the size of the reported confidence intervals, the default

being 95 (percent). small requests small-sample corrections to the covariance matrix estimate, resulting in

t instead of z test statistics for the coefficients and an F instead of Wald χ2 test for overall fit. noconstant

excludes the constant term from X and Z. However, it has no effect in difference GMM since differencing

eliminates the constant anyway.18 In one-step GMM, xtabond2’s robust is equivalent to cluster(id) in

most other estimation commands, where id is the panel identifier variable, requesting standard errors that

are robust to heteroskedasticity and arbitrary patterns of autocorrelation within individuals. In two-step

estimation, where the errors are already theoretically robust, robust triggers the Windmeijer correction.

Most of the other options are straightforward. nomata prevents the use of the Mata implementation

even when it is available, in favor of the ado program. twostep requests two-step GMM, one-step being

the default. noleveleq invokes difference instead of system GMM, the default. nodiffsargan prevents

reporting of certain difference-in-Sargan statistics (described below), which are computationally intensive

since they involve re-estimating the model for each test. It has effect only in the Mata implementation, since

the ado one does not perform the test. orthogonal, also only meaningful for the Mata version, requests the

forward orthogonal deviations transform instead of first differencing. artests sets the maximum lag distance

to check for autocorrelation, the default being 2. arlevels requests that the Arellano-Bond autocorrelation

test be run on the levels residuals instead of the differenced ones; it only applies to system GMM, and only

makes sense in the rare case where it is believed that there are no fixed effects that need to be purged by

differencing. The h() option, which most users can also safely ignore, controls the choice of H. h(1) sets

H = I, for both difference and system GMM. For difference GMM, h(2) and h(3) coincide, equaling the

matrix in (17). They differ for system GMM, however, with h(2) imitating DPD for Ox and h(3) being the

xtabond2 default, according to (21) (see the end of subsection 3.4).

The most important thing to understand about the xtabond2 syntax is that unlike most Stata estimation
18Here, xtabond2 differs from xtabond and DPD, which normally enter the constant in difference GMM after transforming

the data. (DPD does the same for time dummies.) xtabond2 avoids this practice for several reasons. First, in Stata, it is
more natural to treat time dummies, typically created with xi, like any other regressor, transforming them. Second, under the
difference transform, it is equivalent to entering t as a regressor before transformation, which may not be what users intend.
By the same token, it introduces an inconsistency with system GMM. In DPD, in system GMM, the constant term enters only
in the levels equation, and in the usual way; it means 1 rather than t. Thus switching between difference and system GMM
changes the model. However, these problems are minor in practice. Usually difference and system GMM regressions include
time dummies. Since the linear span of the time dummies and the constant term together is the same as that of their first
differences or orthogonal deviations, it does not matter much whether the variables as a group enter transformed or not.
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commands, including xtabond, the variable list before the comma communicates no identification informa-

tion. The first variable defines Y and the remaining ones define X. None of them say anything about Z

even though X and Z may share columns. Designing the instrument matrix is the job of the ivstyle() and

gmmstyle() options after the comma, each of which may be listed multiple times, or not at all. (noconstant

also affects Z in system GMM.) As a result, most regressors appear twice in a command line, once before

the comma for inclusion in X, once after as a source of IV- or GMM-style instruments. Variables that only

serve as instruments appear once, in ivstyle() or gmmstyle() options after the comma.

The standard treatment for strictly exogenous regressors or IV-style excluded instruments, say, w1 and w2,

is ivstyle(w1 w2). This generates one column per variable, with missing not replaced by 0. In particular,

exogenous regressors ordinarily instrument themselves, appearing in both the variable list before the comma

and in an ivstyle() option. In difference GMM, these IV-style columns are transformed unless the user

specifies iv(w1 w2, passthru). ivstyle() also generates one column per variable in system GMM, follow-

ing (19). The patterns in (20) can be requested using the equation suboption, as in: iv(w1 w2, eq(level))

and the compound iv(w1 w2, eq(diff)) iv(w1 w2, eq(level)). The mz suboption instructs xtabond2

to substitute zero for missing in the generated IV-style instruments.

Similarly, the gmmstyle() option includes a list of variables, then suboptions after a comma that control

how they enter Z. By default, gmmstyle() generates the instruments appropriate for predetermined variables:

lags 1 and earlier of the instrumenting variable for the transformed equation and, for system GMM, lag 0

of the instrumenting variable in differences for the levels equation. The laglimits suboption overrides the

defaults on lag range. For example, gmm(w, laglimits(2 .)) specifies lags 2 and deeper for the transformed

equation and lag 1 for the levels equation, which is the standard treatment for endogenous variables. In

general, laglimits(a b ) requests lags a through b of the levels as instruments for the transformed data

and lag a− 1 of the differences for the levels data. a and b can each be missing (“.”); a defaults to 1 and

b to infinity, so that laglimits(. .) is equivalent to leaving the suboption out altogether. a and b can

even be negative, implying forward “lags.” If a > b, xtabond2 swaps their values.19 Since the gmmstyle()

varlist allows time-series operators, there are many routes to the same specification. For example, if w1

is predetermined and w2 endogenous, then instead of gmm(w1) gmm(w2, lag(2 .)), one could simply type

gmm(w1 L.w2). In all of these instances, the suboption collapse is available to “collapse” the instrument

sets as described in subsections 3.2 and 3.4.
19If a <= b < 0 then lag b − 1 of the differences is normally used as an instrument in the levels equations instead of that

dated a− 1, because it is more frequently in the range [1, T ] of valid time indexes. Or, for the same reasons, if a <= 0 <= b or
b <= 0 <= a, the contemporaneous difference is used. Tue Gorgens developed these decision rules.
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gmmstyle() also has equation() and passthru suboptions, which work much like their ivstyle()

counterparts. The exception is that eq(level), by blocking the generation of the instruments for the

transformed equation, causes xtabond2 to generate a full “GMM-style” set of instruments for the levels

equation because they are no longer mathematically redundant.20 passthru prevents the usual differencing

of instruments for the levels equation. As with arlevels, this produces invalid results under the usual

assumptions.

The Mata version of xtabond2 also responds to one option that is not set in the command line, namely the

Mata system parameter matafavor. When this is set to speed (which can be done by typing mata: mata

set matafavor speed, perm at the Stata prompt), the Mata code builds a complete internal representation

of Z.21 If there are 1,000 observations and 100 instruments, then Z will contain some 200,000 elements in

system GMM, each of which will takes 8 bytes in Mata, for a total of roughly 1.5 megabytes. Larger panels

can exceed a computer’s physical memory and actually even slow Mata down as the operating system is

forced to repeatedly cache parts of Z to the hard drive, then reload them. Setting matafavor to space

causes the program to build and destroy submatrices Zi for each individual on the fly. The Mata code in

this mode can be even slower than the ado version, but since the ado version also builds a full representation

of Z, the Mata code in space mode still has the advantage of conserving memory.

Along with the standard estimation results, xtabond2 reports the Sargan/Hansen test, Arellano-Bond

autocorrelation tests, and various summary statistics. Sample size is not an entirely well-defined concept in

system GMM, which runs in effect on two different samples simultaneously. xtabond2 reports the size of the

transformed sample after difference GMM and the untransformed one after system GMM.

The Mata implementation carries out certain difference-in-Sargan tests unless nodiffsargan is specified.

In particular, it reports a difference-in-Sargan test for each instrument group defined by an ivtyle() or

gmmstyle() option, when feasible. So a clause like gmm(x y) implicitly requests a single test for this entire

instrument group while gmm(x) gmm(y) requests the same estimates, but two more targeted difference-in-

Sargan tests. In addition, in system GMM, the Mata version tests the GMM-style instruments for the levels

equation that characterize system GMM, as a group.22

20Since an ordinary gmm(w, laglim(a b )) in system GMM requests lags a through b of w as instruments for the transformed
equation and lag a − 1 of ∆w for the levels equation, for consistency, xtabond2, in versions 1.2.8 and earlier, interpreted
gmm(w, laglim(a b) eq(level)) to request lags a − 1 through b − 1 of ∆w for the levels equation. But with version 2.0.0, the
interpretation changed to lags a–b.

21Despite the speed setting, there is a delay the first time the Mata version of xtabond2 runs in a Stata session, as Stataloads
the function library.

22The reported differences-in-Sargan will generally not match what would be obtained by manually running the estimation
with and without the suspect instruments. Recall from subsection 2.3 that in the full, restricted regression, the moment
weighting matrix is the inverse of the estimated covariance of the moments, call it Ŝ, which is Z′HZ in one-step and Z′Ω̂β̂1

Z
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The Mata and ado implementations should generate identical results. However, if some regressors are

nearly or fully multicollinear, the two may disagree on the number and choice of regressors to drop. Because

floating-point representations of numbers have finite precision, even exactly collinear variables may not quite

appear that way to the computer, and algorithms for identifying them must look for “near-multicollinearity.”

There is no one right definition for that term; and the identification can be sensitive to the exact procedure.

Where the ado program calls the built-in Stata command rmcoll, the Mata program must use its own

procedure, which differs in algorithm and tolerances.23

As a Stata estimation command, xtabond2 can be followed by predict:

predict [type ] newvarname [if exp ] [in range ] [, statistic difference]

where statistic is xb or residuals. The optional type clause controls the data type of the variable

generated. Requesting the xb statistic, the default, essentially gives Xβ̂ where β̂ is the parameter vector from

the estimation. However, difference GMM never estimates a coefficient on the constant term, so predict

can predict the dependent variable only up to a constant. To compensate, after difference GMM, predict

adds a constant to the series chosen to give it the same average as Y. Putting residuals in the command

line requests Y −Xβ̂, where the Xβ̂ again will be adjusted. The difference option requests predictions

and residuals in differences.

The syntax for the post-estimation command abar is

abar [if exp ] [in range ] [, lags(# )]

The lags() option works like xtabond2’s artests() option except that it defaults to 1. abar can run

after regress, ivreg, ivreg2, newey, and newey2. It tests for autocorrelation in the estimation errors,

undifferenced.

4.2 More examples

A simple autoregressive model with no controls except time dummies would be estimated by

xi: xtabond2 y L.y i.t, gmm(L.y) iv(i.t) robust noleveleq

in two-step. In the unrestricted regressions carried out for testing purposes, xtabond2 weights using the submatrix of the
restricted Ŝ corresponding to the non-suspect instruments. This reduces the chance of a negative test statistic (Baum, Schaffer,
and Stillman 2003, p. 18, citing Hayashi 2000). As described in subsection 2.6, adding instruments weakens the Sargan/Hansen
test and can actually reduce the statistic, which is what makes negative differences-in-Sargan more likely if the unrestricted
regression is fully re-estimated.

23In addition, the Mata version will not perfectly handle strange and unusual expressions like gmm(L.x, lag(-1 -1)). This
is the same as gmm(x, lag(0 0)) in principle. But the Mata code will interpret it by lagging x, thus losing the observation of
x for t = T , then unlagging the remaining information. The ado version does not lose data in this way.
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where t is the time variable. This would run one-step difference GMM with robust errors. If w1 is strictly

exogenous, w2 is predetermined but not strictly exogenous, and w3 is endogenous, then

xi: xtabond2 y L.y w1 w2 w3 i.t, gmm(L.y w2 L.w3) iv(i.t w1) two robust small orthog

would estimate the model with the standard choices of instruments—in this case with two-step system GMM,

corrected standard errors, small-sample adjustments, and orthogonal deviations.

If the user runs system GMM without declaring instruments that are non-zero for the transformed

equation, then the estimation is effectively run on levels only. Moreover, though it is designed for dynamic

models, xtabond2 does not require the lagged dependent variable to appear on the right hand side. As a

result, the command can perform OLS and 2SLS. Following are pairs of equivalents, all of which can be run

on the Arellano-Bond data set:

regress n w k
abar
xtabond2 n w k, iv(w k, eq(level)) small arlevels artests(1)

ivreg2 n cap (w = k ys), cluster(id)
abar, lags(2)
xtabond2 n w cap, iv(cap k ys, eq(level)) small robust arlevels

ivreg2 n cap (w = k ys), cluster(id) gmm
abar
xtabond2 n w cap, iv(cap k ys, eq(lev)) two artests(1) arlevels

About the only value in such tricks is that they make the Windmeijer correction available for linear GMM

regressions generally.

xtabond2 can replicate results from comparable packages. To reproduce results from xtabond, one must

usually generate a variable that xtabond2 will difference into a constant, in order to mimic the way xtabond

enters a constant directly into the difference equation. Thus, another matching pair:

gen cons = year
xtabond n, lags(1) pre(w, lagstruct(1,.)) pre(k, endog) robust
xtabond2 n L.n w L.w k cons, gmm(L.(w n k)) iv(cons) noleveleq robust

To exactly match difference GMM results from DPD for Gauss and Ox, one must also create variables that

become time dummies after transformation. This example exactly imitates the regression for column (a1),

Table 4 in Arellano and Bond (1991):

forvalues y = 1979/1984 /* Make variables whose differences are time dummies */
gen yr‘y’c = year>=‘y’

}
gen cons = year
xtabond2 n L(0/1).(L.n w) L(0/2).(k ys) yr198?c cons, gmm(L.n) iv(L(0/1).w L(0/2).(k ys)
> yr198?c cons) noleveleq noconstant small robust
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For system GMM, these gymnastics are unnecessary since DPD enters the constant and time dummies

directly into the levels equation, not the difference one. This command exactly reproduces a version of the

of Blundell and Bond’s regression 4, Table 4, included in a demonstration file included with DPD for Ox24:

xtabond2 n L.n L(0/1).(w k) yr1978-yr1984, gmm(L.(w k n)) iv(yr1978-yr1984, eq(level)) h(2) robust two small

More replications from the regressions in the Arellano-Bond and Blundell-Bond papers are in two ancillary

files that come with xtabond2, abest.do and bbest.do. In addition, greene.do reproduces a run in Greene

(2002, p. 554).25

5 Conclusion

By way of conclusion, I offer a few pointers on the use of difference and system GMM, however implemented.

Most of these are discussed above.

1. Apply the estimators to “small T , large N” panels. If T is large, dynamic panel bias becomes insignifi-

cant, and a more straightforward fixed effects estimator works. Meanwhile, the number of instruments

in difference and system GMM tends to explode with T . If N is small, the Arellano-Bond autocorre-

lation test may become unreliable.

2. Include time dummies. The autocorrelation test and the robust estimates of the coefficient standard

errors assume no correlation across individuals in the idiosyncratic disturbances. Time dummies make

this assumption more likely to hold.

3. Use orthogonal deviations in panels with gaps. This maximizes sample size.

4. Ordinarily, put every regressor into the instrument matrix, Z, in some form. If a regressor w is strictly

exogenous, standard treatment is to insert it as a single column (in xtabond2, with iv(w)). If w is

predetermined by not strictly exogenous, standard treatment is to use lags 1 and deeper, GMM-style

(gmm(w)). And if w is endogenous, standard treatment is lags 2 and deeper (gmm(L.w)).

5. Mind and report the instrument count. As discussed in subsection 2.6, too many instruments can overfit

endogenous variables and fail to expunge their endogenous components. Ironically, it also weakens the

power of the Hansen test to detect overidentification. Because the risk is high with these estimators,
24In the command file bbest.ox.
25To download them into your current directory, type net get xtabond2 in Stata.
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researchers should report the number of instruments and reviewers should question regressions where

it is not reported. A telltale sign is a perfect Hansen statistic of 1.000. One rule of thumb is to worry

if the instrument count exceeds N . If it does, then test for robustness to reducing it. Options include

limiting the lags used in GMM-style instruments and, in xtabond2, collapsing instruments.

6. Before using system GMM, ponder the required assumptions. The validity of the additional instruments

in system GMM depends on the assumption that changes in the instrumenting variables are uncorre-

lated with the fixed effects. In particular, they require that throughout the study period, individuals

sampled are in a kind of steady-state, in the sense that deviations from long-term values, controlling

for covariates, are not systematically related to fixed effects.

7. Report all specification choices. Using these estimators involves many choices, and researchers should

report the ones they make—difference or system GMM; first differences or deviations; one- or two-step

estimation; non-robust, robust, or corrected errors; and the choice of instrumenting variables and lags

used.
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